Benjamin J. Clemens, Jeremy D. Romer, Jeffrey S. Ziller, Michelle Jones
{"title":"More flow in a regulated river correlates with more and earlier adult lamprey passage, but peak passage occurs at annual low flows","authors":"Benjamin J. Clemens, Jeremy D. Romer, Jeffrey S. Ziller, Michelle Jones","doi":"10.1111/eff.12703","DOIUrl":null,"url":null,"abstract":"<p>Artificial obstructions such as dams are a key limiting factor or threat to adult Pacific lamprey (<i>Entosphenus tridentatus</i>) attempting to access upstream spawning habitats. Nevertheless, lamprey counted during dam passage (dam counts) is useful for monitoring abundance trends of these fish. We describe the trends in lamprey dam counts during 2005–2020 at Leaburg Dam (6.7 m height) on the McKenzie River (Oregon, USA). Despite similar flow volumes at each of two fish ladders, most lampreys in most years passed Leaburg Dam via the right bank fish ladder (vertical slot design) rather than the left bank fish ladder (half Ice Harbor). Counts ranged between 32 and 176 lampreys per year (median = 71.5 individuals). Akaike Information Criterion revealed the best fit General Additive Model (GAM) that described the cumulative proportion of lamprey passage included ‘year’, ‘day of the year’ and ‘river flow’, as opposed to other GAMs that included fewer of these variables or that included ‘water temperature’. Lamprey generally began passing during consecutive days of decreasing river flows, with most passing during annual low flows during June–August each year. In addition, total annual dam counts were strongly correlated with the sum of mean daily river flows. Thus, higher annual river flows correlate with earlier and more lamprey passage, but peak passage occurs at annual low flows. Mean daily water temperature ranged between 7.8 and 14.9°C during lamprey passage.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"32 3","pages":"516-527"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12703","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 1
Abstract
Artificial obstructions such as dams are a key limiting factor or threat to adult Pacific lamprey (Entosphenus tridentatus) attempting to access upstream spawning habitats. Nevertheless, lamprey counted during dam passage (dam counts) is useful for monitoring abundance trends of these fish. We describe the trends in lamprey dam counts during 2005–2020 at Leaburg Dam (6.7 m height) on the McKenzie River (Oregon, USA). Despite similar flow volumes at each of two fish ladders, most lampreys in most years passed Leaburg Dam via the right bank fish ladder (vertical slot design) rather than the left bank fish ladder (half Ice Harbor). Counts ranged between 32 and 176 lampreys per year (median = 71.5 individuals). Akaike Information Criterion revealed the best fit General Additive Model (GAM) that described the cumulative proportion of lamprey passage included ‘year’, ‘day of the year’ and ‘river flow’, as opposed to other GAMs that included fewer of these variables or that included ‘water temperature’. Lamprey generally began passing during consecutive days of decreasing river flows, with most passing during annual low flows during June–August each year. In addition, total annual dam counts were strongly correlated with the sum of mean daily river flows. Thus, higher annual river flows correlate with earlier and more lamprey passage, but peak passage occurs at annual low flows. Mean daily water temperature ranged between 7.8 and 14.9°C during lamprey passage.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.