Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi

Dicki Irfansyah, Metty Mustikasari, Amat Suroso
{"title":"Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi","authors":"Dicki Irfansyah, Metty Mustikasari, Amat Suroso","doi":"10.30591/JPIT.V6I2.2802","DOIUrl":null,"url":null,"abstract":"Indonesia is the fourth largest coffee producing country in the world. However, when compared to 3 other countries, Indonesia's coffee production is still relatively small. Many factors cause this to happen, including the number of farmers' coffee trees that are attacked by diseases. If the handling of this disease is slow, then the disease in one tree can be transmitted to other trees. This causes a decrease in Indonesian coffee productivity. In this study, the author implemented the Alexnet Convolutional Neural Network (CNN) architecture using  the MATLAB programming platform for the identification of diseases in coffee plants through images. The total number of datasets used is 300 data which is divided into 3 classes, namely health, rust and red spider mite. The training process involving 260 training data resulted in an accuracy of 69.44-80.56%. The network testing process using 40 test data resulted in an accuracy of 81.6%. Based on the results of the study, it can be said that the Alexnet architecture is accurate for the classification of leaf pests on coffee plants","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/JPIT.V6I2.2802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Indonesia is the fourth largest coffee producing country in the world. However, when compared to 3 other countries, Indonesia's coffee production is still relatively small. Many factors cause this to happen, including the number of farmers' coffee trees that are attacked by diseases. If the handling of this disease is slow, then the disease in one tree can be transmitted to other trees. This causes a decrease in Indonesian coffee productivity. In this study, the author implemented the Alexnet Convolutional Neural Network (CNN) architecture using  the MATLAB programming platform for the identification of diseases in coffee plants through images. The total number of datasets used is 300 data which is divided into 3 classes, namely health, rust and red spider mite. The training process involving 260 training data resulted in an accuracy of 69.44-80.56%. The network testing process using 40 test data resulted in an accuracy of 81.6%. Based on the results of the study, it can be said that the Alexnet architecture is accurate for the classification of leaf pests on coffee plants
卷积神经网络(CNN)体系结构Alexnet用于照片咖啡植物片的Hama分类
印度尼西亚是世界第四大咖啡生产国。然而,与其他3个国家相比,印度尼西亚的咖啡产量仍然相对较小。造成这种情况的因素很多,包括农民的咖啡树受到疾病侵袭的数量。如果对这种疾病的处理缓慢,那么一棵树上的疾病可能会传染给其他树。这导致印尼咖啡产量下降。在本研究中,作者使用MATLAB编程平台实现了Alexnet卷积神经网络(CNN)架构,用于通过图像识别咖啡植物的疾病。使用的数据集总数为300个,分为3类,即健康、铁锈和红蜘蛛螨。涉及260个训练数据的训练过程的准确率为69.44-80.56%。使用40个测试数据的网络测试过程的准确度为81.6%。根据研究结果,可以说Alexnet架构对于咖啡植物叶害虫的分类是准确的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信