{"title":"Sharp well-posedness and ill-posedness results for dissipative KdV equations on the real line","authors":"X. Carvajal, P. Gamboa, Raphael Santos","doi":"10.7153/dea-2021-13-24","DOIUrl":null,"url":null,"abstract":"This work is concerned about the Cauchy problem for the following generalized KdV- Burgers equation \n% \n\\begin{equation*} \n\\left\\{\\begin{array}{l} \n\\partial_tu+\\partial_x^3u+L_pu+u\\partial_xu=0, \nu(0,\\,x)=u_0(x). \n\\end{array} \n\\right. \n\\end{equation*} \n% \nwhere $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\\!\\!R)$ and sharp ill-posedness in $H^s(I\\!\\!R)$ when $s<-p/2$ with $p \\geq 2$.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2021-13-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12
Abstract
This work is concerned about the Cauchy problem for the following generalized KdV- Burgers equation
%
\begin{equation*}
\left\{\begin{array}{l}
\partial_tu+\partial_x^3u+L_pu+u\partial_xu=0,
u(0,\,x)=u_0(x).
\end{array}
\right.
\end{equation*}
%
where $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\!\!R)$ and sharp ill-posedness in $H^s(I\!\!R)$ when $s<-p/2$ with $p \geq 2$.
本文研究了以下广义KdV- Burgers方程的柯西问题 % \begin{equation*} \left\{\begin{array}{l} \partial_tu+\partial_x^3u+L_pu+u\partial_xu=0, u(0,\,x)=u_0(x). \end{array} \right. \end{equation*} % where $L_p$ is a dissipative multiplicator operator. Using Besov-Bourgain Spaces, we establish a bilinear estimate and following the framework developed in Molinet, L. & Vento, S. (2011) we prove sharp global well-posedness in the Sobolev spaces $H^{-p/2}(I\!\!R)$ and sharp ill-posedness in $H^s(I\!\!R)$ when $s<-p/2$ with $p \geq 2$.