{"title":"Shear live load analysis of NEXT beam bridges for accelerated bridge construction","authors":"Jianwei Huang","doi":"10.3233/brs-210191","DOIUrl":null,"url":null,"abstract":"Using precast concrete elements in bridge structures has emerged as an economic and durable solution to enhance the sustainability of bridges. The northeast extreme tee (NEXT) beams were recently developed for accelerated bridge construction by the Precast/Prestressed Concrete Institute (PCI). To date, several studies on the live load distribution factor (LLDF) for moment in NEXT F beam bridges have been reported. However, the LLDFs for shear in NEXT F beam bridges are still unclear. In this paper, the lateral distributions of live load shear in NEXT F beam bridges were examined through a comprehensive parametric study. The parameters covered in this study included bridge section, span length, beam section, number of beams, and number of lanes loaded. A validated finite element (FE) modeling technique was employed to analyze the shear behavior of NEXT F beam bridges under the AASHTO HL-93 loading and to determine the LLDFs for shear in NEXT beam bridges. A method for computing the FE-LLDF for shear was proposed for NEXT beam bridges. Results from this study showed that the FE-LLDFs have a similar trend as the AASHTO LFRD-LLDFs. However, it was observed that some LRFD-LLDFs are lower than the FE-LLDFs by up to 14.1%, which implied using the LRFD-LLDFs for shear could result in an unsafe shear design for NEXT beam bridges. It is recommended that a factor of 1.2 be applied to the LRFD-LLDF for shear in NEXT F beam bridges for structural safety and design simplicity.","PeriodicalId":43279,"journal":{"name":"Bridge Structures","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bridge Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/brs-210191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Using precast concrete elements in bridge structures has emerged as an economic and durable solution to enhance the sustainability of bridges. The northeast extreme tee (NEXT) beams were recently developed for accelerated bridge construction by the Precast/Prestressed Concrete Institute (PCI). To date, several studies on the live load distribution factor (LLDF) for moment in NEXT F beam bridges have been reported. However, the LLDFs for shear in NEXT F beam bridges are still unclear. In this paper, the lateral distributions of live load shear in NEXT F beam bridges were examined through a comprehensive parametric study. The parameters covered in this study included bridge section, span length, beam section, number of beams, and number of lanes loaded. A validated finite element (FE) modeling technique was employed to analyze the shear behavior of NEXT F beam bridges under the AASHTO HL-93 loading and to determine the LLDFs for shear in NEXT beam bridges. A method for computing the FE-LLDF for shear was proposed for NEXT beam bridges. Results from this study showed that the FE-LLDFs have a similar trend as the AASHTO LFRD-LLDFs. However, it was observed that some LRFD-LLDFs are lower than the FE-LLDFs by up to 14.1%, which implied using the LRFD-LLDFs for shear could result in an unsafe shear design for NEXT beam bridges. It is recommended that a factor of 1.2 be applied to the LRFD-LLDF for shear in NEXT F beam bridges for structural safety and design simplicity.