Contrast tests for groups of functional data

Pub Date : 2023-08-19 DOI:10.1002/cjs.11794
Quyen Do, Pang Du
{"title":"Contrast tests for groups of functional data","authors":"Quyen Do,&nbsp;Pang Du","doi":"10.1002/cjs.11794","DOIUrl":null,"url":null,"abstract":"<p>Functional analysis of variance (ANOVA) models are often used to compare groups of functional data. Similar to the traditional ANOVA model, a common follow-up procedure to the rejection of the functional ANOVA null hypothesis is to perform functional linear contrast tests to identify which groups have different mean functions. Most existing functional contrast tests assume independent functional observations within each group. In this article, we introduce a new functional linear contrast test procedure that accounts for possible time dependency among functional group members. The test statistic and its normalized version, based on the Karhunen–Loève decomposition of the covariance function and a weak convergence result of the error processes, follow respectively a mixture chi-squared and a chi-squared distribution. An extensive simulation study is conducted to compare the empirical performance of the existing and new contrast tests. We also present two applications of these contrast tests to a weather study and a battery-life study. We provide software implementation and example data in the Supplementary Material.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional analysis of variance (ANOVA) models are often used to compare groups of functional data. Similar to the traditional ANOVA model, a common follow-up procedure to the rejection of the functional ANOVA null hypothesis is to perform functional linear contrast tests to identify which groups have different mean functions. Most existing functional contrast tests assume independent functional observations within each group. In this article, we introduce a new functional linear contrast test procedure that accounts for possible time dependency among functional group members. The test statistic and its normalized version, based on the Karhunen–Loève decomposition of the covariance function and a weak convergence result of the error processes, follow respectively a mixture chi-squared and a chi-squared distribution. An extensive simulation study is conducted to compare the empirical performance of the existing and new contrast tests. We also present two applications of these contrast tests to a weather study and a battery-life study. We provide software implementation and example data in the Supplementary Material.

Abstract Image

分享
查看原文
功能数据组的对比测试
方差函数分析(ANOVA)模型通常用于比较函数数据组。与传统的方差分析模型类似,拒绝功能性方差分析零假设的常见后续程序是进行功能性线性对比测试,以确定哪些组具有不同的平均函数。大多数现有的功能对比测试都假设在每组中进行独立的功能观察。在本文中,我们介绍了一种新的函数线性对比测试程序,该程序考虑了函数组成员之间可能的时间依赖性。基于协方差函数的Karhunen–Loève分解和误差过程的弱收敛结果,检验统计量及其归一化版本分别遵循混合卡方分布和卡方分布。进行了广泛的模拟研究,以比较现有和新的对比测试的经验性能。我们还介绍了这些对比测试在天气研究和电池寿命研究中的两个应用。我们在补充材料中提供了软件实现和示例数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信