Lateral response of a layered material with interlayer friction

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tomoki Sasada, Kento Yasuda, Yuto Hosaka, S. Komura
{"title":"Lateral response of a layered material with interlayer friction","authors":"Tomoki Sasada, Kento Yasuda, Yuto Hosaka, S. Komura","doi":"10.1080/1539445X.2022.2115514","DOIUrl":null,"url":null,"abstract":"ABSTRACT We investigate the mechanical properties of a layered material with interlayer friction. We propose a model that contains lateral elasticity and interlayer friction to obtain the response function both in the Fourier and real spaces. By investigating how the internal deformation is laterally induced due to the applied surface displacement, we find that it is transmitted into the material with an apparent phase difference. We also obtain the effective complex modulus of the layered material and show that it exhibits an intermediate power-law behavior in the low-frequency regime. Our results can be used to estimate the internal deformation of layered materials that exists on various different scales.","PeriodicalId":22140,"journal":{"name":"Soft Materials","volume":"21 1","pages":"14 - 22"},"PeriodicalIF":1.6000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1539445X.2022.2115514","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT We investigate the mechanical properties of a layered material with interlayer friction. We propose a model that contains lateral elasticity and interlayer friction to obtain the response function both in the Fourier and real spaces. By investigating how the internal deformation is laterally induced due to the applied surface displacement, we find that it is transmitted into the material with an apparent phase difference. We also obtain the effective complex modulus of the layered material and show that it exhibits an intermediate power-law behavior in the low-frequency regime. Our results can be used to estimate the internal deformation of layered materials that exists on various different scales.
层间摩擦时层状材料的横向响应
摘要我们研究了具有层间摩擦的层状材料的力学性能。我们提出了一个包含横向弹性和层间摩擦的模型,以获得傅立叶空间和实空间中的响应函数。通过研究施加的表面位移如何横向引起内部变形,我们发现它以明显的相位差传递到材料中。我们还获得了层状材料的有效复模量,并表明它在低频区域表现出中等幂律行为。我们的结果可用于估计存在于各种不同尺度上的层状材料的内部变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Materials
Soft Materials 工程技术-材料科学:综合
CiteScore
2.90
自引率
0.00%
发文量
21
审稿时长
2.2 months
期刊介绍: Providing a common forum for all soft matter scientists, Soft Materials covers theory, simulation, and experimental research in this rapidly expanding and interdisciplinary field. As soft materials are often at the heart of modern technologies, soft matter science has implications and applications in many areas ranging from biology to engineering. Unlike many journals which focus primarily on individual classes of materials or particular applications, Soft Materials draw on all physical, chemical, materials science, and biological aspects of soft matter. Featured topics include polymers, biomacromolecules, colloids, membranes, Langmuir-Blodgett films, liquid crystals, granular matter, soft interfaces, complex fluids, surfactants, gels, nanomaterials, self-organization, supramolecular science, molecular recognition, soft glasses, amphiphiles, foams, and active matter. Truly international in scope, Soft Materials contains original research, invited reviews, in-depth technical tutorials, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信