N. Ressayre
求助PDF
{"title":"On the tensor semigroup of affine Kac-Moody lie algebras","authors":"N. Ressayre","doi":"10.1090/JAMS/975","DOIUrl":null,"url":null,"abstract":"<p>The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> defines a semigroup of triples of weights. Namely, given <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript plus\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>P</mml:mi>\n <mml:mo>+</mml:mo>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">P_+</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dominant integral weights, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">V(\\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denotes the irreducible representation of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with highest weight <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We are interested in the <italic>tensor semigroup</italic> <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript double-struck upper N Baseline left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus Superscript 3 Baseline vertical-bar upper V left-parenthesis mu right-parenthesis subset-of upper V left-parenthesis lamda 1 right-parenthesis circled-times upper V left-parenthesis lamda 2 right-parenthesis EndSet comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Gamma _{\\mathbb {N}}(\\mathfrak {g})≔\\{(\\lambda _1,\\lambda _2,\\mu )\\in P_{+}^3\\,|\\, V(\\mu )\\subset V(\\lambda _1)\\otimes V(\\lambda _2)\\}, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n and in the <italic>tensor cone</italic> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma left-parenthesis German g right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma (\\mathfrak {g})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it generates: <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma left-parenthesis German g right-parenthesis colon-equal StartSet left-parenthesis lamda 1 comma lamda 2 comma mu right-parenthesis element-of upper P Subscript plus comma double-struck upper Q Superscript 3 Baseline vertical-bar there-exists upper N greater-than-or-equal-to 1 upper V left-parenthesis upper N mu right-parenthesis subset-of upper V left-parenthesis upper N lamda 1 right-parenthesis circled-times upper V left-parenthesis upper N lamda 2 right-parenthesis EndSet period\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≔</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msubsup>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi mathvariant=\"normal\">∃<!-- ∃ --></mml:mi>\n <mml:mi>N</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mspace width=\"1em\" />\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>V</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:msub>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>.</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Gamma (\\mathfrak {g})≔\\{(\\lambda _1,\\lambda _2,\\mu )\\in P_{+,{\\mathbb {Q}}}^3\\,|\\,\\exists N\\geq 1 \\quad V(N\\mu )\\subset V(N\\lambda _1)\\otimes V(N\\lambda _2)\\}. \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n Here, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript plus comma double-struck upper Q\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>+</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">P_{+,{\\mathb","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/975","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
引用
批量引用
Abstract
The support of the tensor product decomposition of integrable irreducible highest weight representations of a symmetrizable Kac-Moody Lie algebra
g
\mathfrak {g}
defines a semigroup of triples of weights. Namely, given
λ
\lambda
in the set
P
+
P_+
of dominant integral weights,
V
(
λ
)
V(\lambda )
denotes the irreducible representation of
g
\mathfrak {g}
with highest weight
λ
\lambda
. We are interested in the tensor semigroup
Γ
N
(
g
)
≔
{
(
λ
1
,
λ
2
,
μ
)
∈
P
+
3
|
V
(
μ
)
⊂
V
(
λ
1
)
⊗
V
(
λ
2
)
}
,
\begin{equation*} \Gamma _{\mathbb {N}}(\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+}^3\,|\, V(\mu )\subset V(\lambda _1)\otimes V(\lambda _2)\}, \end{equation*}
and in the tensor cone
Γ
(
g
)
\Gamma (\mathfrak {g})
it generates:
Γ
(
g
)
≔
{
(
λ
1
,
λ
2
,
μ
)
∈
P
+
,
Q
3
|
∃
N
≥
1
V
(
N
μ
)
⊂
V
(
N
λ
1
)
⊗
V
(
N
λ
2
)
}
.
\begin{equation*} \Gamma (\mathfrak {g})≔\{(\lambda _1,\lambda _2,\mu )\in P_{+,{\mathbb {Q}}}^3\,|\,\exists N\geq 1 \quad V(N\mu )\subset V(N\lambda _1)\otimes V(N\lambda _2)\}. \end{equation*}
Here,
P
+
,
Q
P_{+,{\mathb