Implementasi Deep Learning untuk Entity Matching pada Dataset Obat (Studi Kasus K24 dan Farmaku)

Rivanda Putra Pratama, Rahmat Hidayat, Nisrina Fadhilah Fano, Adam Akbar, Nur Aini Rakhmawati
{"title":"Implementasi Deep Learning untuk Entity Matching pada Dataset Obat (Studi Kasus K24 dan Farmaku)","authors":"Rivanda Putra Pratama, Rahmat Hidayat, Nisrina Fadhilah Fano, Adam Akbar, Nur Aini Rakhmawati","doi":"10.14421/jiska.2021.6.3.130-138","DOIUrl":null,"url":null,"abstract":"Data processing speed in companies is important to speed up their analysis. Entity matching is a computational process that companies can perform in data processing. In conducting data processing, entity matching plays a role in determining two different data but referring to the same entity. Entity matching problems arise when the dataset used in the comparison is large. The deep learning concept is one of the solutions in dealing with entity matching problems. DeepMatcher is a python package based on a deep learning model architecture that can solve entity matching problems. The purpose of this study was to determine the matching between the two datasets with the application of DeepMatcher in entity matching using drug data from farmaku.com and k24klik.com. The comparison model used is the Hybrid model. Based on the test results, the Hybrid model produces accurate numbers, so that the entity matching used in this study runs well. The best accuracy value of the 10th training with an F1 value of 30.30, a precision value of 17.86, and a recall value of 100.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2021.6.3.130-138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data processing speed in companies is important to speed up their analysis. Entity matching is a computational process that companies can perform in data processing. In conducting data processing, entity matching plays a role in determining two different data but referring to the same entity. Entity matching problems arise when the dataset used in the comparison is large. The deep learning concept is one of the solutions in dealing with entity matching problems. DeepMatcher is a python package based on a deep learning model architecture that can solve entity matching problems. The purpose of this study was to determine the matching between the two datasets with the application of DeepMatcher in entity matching using drug data from farmaku.com and k24klik.com. The comparison model used is the Hybrid model. Based on the test results, the Hybrid model produces accurate numbers, so that the entity matching used in this study runs well. The best accuracy value of the 10th training with an F1 value of 30.30, a precision value of 17.86, and a recall value of 100.
药物数据库实体匹配的深度学习实现
公司的数据处理速度对于加快分析速度非常重要。实体匹配是公司在数据处理中可以执行的一个计算过程。在进行数据处理时,实体匹配在确定两个不同的数据但引用同一实体方面发挥作用。当比较中使用的数据集很大时,就会出现实体匹配问题。深度学习概念是处理实体匹配问题的解决方案之一。DeepMatcher是一个基于深度学习模型架构的python包,可以解决实体匹配问题。本研究的目的是使用farmaku.com和k24klik.com的药物数据,通过DeepMatcher在实体匹配中的应用,确定两个数据集之间的匹配。使用的比较模型是混合模型。基于测试结果,混合模型产生了准确的数字,因此本研究中使用的实体匹配运行良好。第10次训练的最佳准确度值,F1值为30.30,准确度值为17.86,召回率值为100。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信