Boosted fluctuation responses in power grids with active voltage dynamics

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Moritz Thümler, M. Timme
{"title":"Boosted fluctuation responses in power grids with active voltage dynamics","authors":"Moritz Thümler, M. Timme","doi":"10.1088/2632-072X/acdb26","DOIUrl":null,"url":null,"abstract":"Secure electric energy supply and thus stable operation of power grids fundamentally relies on their capability to cope with fluctuations. Here, we study how active voltage dynamics impacts the collective response dynamics of networked power grids. We find that the systems driven by ongoing fluctuating inputs exhibit a bulk, a resonance, and a localized grid frequency response regime, as for static voltages. However, active voltage dynamics generically weakens the degree of localization in the grid, thereby intensifying and spatially extending the high-frequency responses. An analytic approximation scheme that takes into account shortest signal propagation paths among the voltage, phase angle and frequency variables result in an asymptotic lowest-order expansion that helps understanding the boosted high-frequency responses. These results moreover offer a generic tool to systematically investigate fluctuation response patterns in power grid models with and without active voltage dynamics.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acdb26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Secure electric energy supply and thus stable operation of power grids fundamentally relies on their capability to cope with fluctuations. Here, we study how active voltage dynamics impacts the collective response dynamics of networked power grids. We find that the systems driven by ongoing fluctuating inputs exhibit a bulk, a resonance, and a localized grid frequency response regime, as for static voltages. However, active voltage dynamics generically weakens the degree of localization in the grid, thereby intensifying and spatially extending the high-frequency responses. An analytic approximation scheme that takes into account shortest signal propagation paths among the voltage, phase angle and frequency variables result in an asymptotic lowest-order expansion that helps understanding the boosted high-frequency responses. These results moreover offer a generic tool to systematically investigate fluctuation response patterns in power grid models with and without active voltage dynamics.
具有有源电压动力学的电网中的升压波动响应
安全的电力供应和电网的稳定运行从根本上取决于它们应对波动的能力。在这里,我们研究了有功电压动态如何影响网络电网的集体响应动态。我们发现,对于静态电压,由持续波动输入驱动的系统表现出体积、共振和局部电网频率响应机制。然而,有源电压动力学通常会削弱电网中的局部化程度,从而增强并在空间上扩展高频响应。考虑到电压、相位角和频率变量之间的最短信号传播路径的分析近似方案导致渐近的最低阶展开,这有助于理解增强的高频响应。此外,这些结果为系统研究有和无有功电压动态的电网模型中的波动响应模式提供了一个通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信