{"title":"First-Arrival Picking for Microseismic Monitoring Based on Deep Learning","authors":"Xiaolong Guo","doi":"10.1155/2021/5548346","DOIUrl":null,"url":null,"abstract":"In microseismic monitoring, achieving an accurate and efficient first-arrival picking is crucial for improving the accuracy and efficiency of microseismic time-difference source location. In the era of big data, the traditional first-arrival picking method cannot meet the real-time processing requirements of microseismic monitoring process. Using the advanced idea of deep learning-based end-to-end classification and the prominent feature extraction advantages of a fully convolution neural network, this paper proposes a first-arrival picking method of effective signals for microseismic monitoring based on UNet++ network, which can significantly improve the accuracy and efficiency of first-arrival picking. In this paper, we first introduced the methodology of the UNet++-based picking method. And then, the performance of the proposed method is verified by the experiments with finite-difference forward modeling simulated signals and actual microseismic records under different signal-to-noise ratios, and finally, comparative experiments are performed using the U-Net-based first-arrival picking algorithm and the Short-Term Average to Long-Term Average (STA/LTA) algorithm. The results show that compared to the U-Net network, the proposed method can obviously improve the first-arrival picking accuracy of the low signal-to-noise ratio microseismic signals, achieving significantly higher accuracy and efficiency than the STA/LTA algorithm, which is famous for its high efficiency in traditional algorithms.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":"2021 1","pages":"1-14"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5548346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
In microseismic monitoring, achieving an accurate and efficient first-arrival picking is crucial for improving the accuracy and efficiency of microseismic time-difference source location. In the era of big data, the traditional first-arrival picking method cannot meet the real-time processing requirements of microseismic monitoring process. Using the advanced idea of deep learning-based end-to-end classification and the prominent feature extraction advantages of a fully convolution neural network, this paper proposes a first-arrival picking method of effective signals for microseismic monitoring based on UNet++ network, which can significantly improve the accuracy and efficiency of first-arrival picking. In this paper, we first introduced the methodology of the UNet++-based picking method. And then, the performance of the proposed method is verified by the experiments with finite-difference forward modeling simulated signals and actual microseismic records under different signal-to-noise ratios, and finally, comparative experiments are performed using the U-Net-based first-arrival picking algorithm and the Short-Term Average to Long-Term Average (STA/LTA) algorithm. The results show that compared to the U-Net network, the proposed method can obviously improve the first-arrival picking accuracy of the low signal-to-noise ratio microseismic signals, achieving significantly higher accuracy and efficiency than the STA/LTA algorithm, which is famous for its high efficiency in traditional algorithms.
期刊介绍:
International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.