Observation of LEO Objects Using Optical Surveillance Facilities: The Geographic Aspect

IF 0.7 Q4 ASTRONOMY & ASTROPHYSICS
O. Kozhukhov, T. Dementiev, S.V. Rischenko, N. Koshkin, L. Shakun, S. Strakhova, O.M. Piskun, D. Kozhukhov, O.M. Iluchok, S. Moskalenko, S.M. Korniyevskiy
{"title":"Observation of LEO Objects Using Optical Surveillance Facilities: The Geographic Aspect","authors":"O. Kozhukhov, T. Dementiev, S.V. Rischenko, N. Koshkin, L. Shakun, S. Strakhova, O.M. Piskun, D. Kozhukhov, O.M. Iluchok, S. Moskalenko, S.M. Korniyevskiy","doi":"10.2478/arsa-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Simulation modelling of the observability of low Earth orbit (LEO) objects was performed using optical surveillance facilities depending on their geographic location and time of year. Orbital data for LEO objects from the open-access catalogue of the near-Earth space objects of the US Combined Space Operations Center (CSpOC) were taken as the initial data for the simulation. The simulation results revealed a complex relationship between the pattern of observability of a LEO object, its orbital parameters and location of the optical surveillance facility, in particular, for Sun-synchronous orbits (SSO) and observing facilities located near the equator. We also discuss variations in the frequency of passes of LEO objects into the field of view (FOV) and in the duration of their observation while passing through the FOV for optical surveillance facilities at three alternative locations. The obtained results and modelling techniques can be further used in the location planning of new optical observing facilities.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Simulation modelling of the observability of low Earth orbit (LEO) objects was performed using optical surveillance facilities depending on their geographic location and time of year. Orbital data for LEO objects from the open-access catalogue of the near-Earth space objects of the US Combined Space Operations Center (CSpOC) were taken as the initial data for the simulation. The simulation results revealed a complex relationship between the pattern of observability of a LEO object, its orbital parameters and location of the optical surveillance facility, in particular, for Sun-synchronous orbits (SSO) and observing facilities located near the equator. We also discuss variations in the frequency of passes of LEO objects into the field of view (FOV) and in the duration of their observation while passing through the FOV for optical surveillance facilities at three alternative locations. The obtained results and modelling techniques can be further used in the location planning of new optical observing facilities.
利用光学监视设施对低轨道物体的观测:地理方面
摘要根据近地轨道物体的地理位置和一年中的时间,使用光学监视设施对其可观测性进行了模拟建模。来自美国联合空间作战中心近地空间物体开放获取目录的低地球轨道物体轨道数据被用作模拟的初始数据。模拟结果揭示了低地球轨道物体的可观察性模式、轨道参数和光学监视设施的位置之间的复杂关系,特别是对于太阳同步轨道(SSO)和位于赤道附近的观测设施。我们还讨论了低地球轨道物体进入视场(FOV)的频率变化,以及它们在通过三个备选位置的光学监视设施的视场时的观测持续时间变化。所获得的结果和建模技术可进一步用于新光学观测设施的位置规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
11.10%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信