A Learning Framework for Distribution-Based Game-Theoretic Solution Concepts

IF 1.1 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tushant Jha, Yair Zick
{"title":"A Learning Framework for Distribution-Based Game-Theoretic Solution Concepts","authors":"Tushant Jha, Yair Zick","doi":"10.1145/3580374","DOIUrl":null,"url":null,"abstract":"The past few years have seen several works exploring learning economic solutions from data, including optimal auction design, function optimization, stable payoffs in cooperative games, and more. In this work, we provide a unified learning-theoretic methodology for modeling such problems and establish tools for determining whether a given solution concept can be efficiently learned from data. Our learning-theoretic framework generalizes a notion of function space dimension—the graph dimension—adapting it to the solution concept learning domain. We identify sufficient conditions for efficient solution learnability and show that results in existing works can be immediately derived using our methodology. Finally, we apply our methods in other economic domains, yielding learning variants of competitive equilibria and Condorcet winners.","PeriodicalId":42216,"journal":{"name":"ACM Transactions on Economics and Computation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 12

Abstract

The past few years have seen several works exploring learning economic solutions from data, including optimal auction design, function optimization, stable payoffs in cooperative games, and more. In this work, we provide a unified learning-theoretic methodology for modeling such problems and establish tools for determining whether a given solution concept can be efficiently learned from data. Our learning-theoretic framework generalizes a notion of function space dimension—the graph dimension—adapting it to the solution concept learning domain. We identify sufficient conditions for efficient solution learnability and show that results in existing works can be immediately derived using our methodology. Finally, we apply our methods in other economic domains, yielding learning variants of competitive equilibria and Condorcet winners.
基于分布的博弈论求解概念的学习框架
在过去的几年里,有几项工作探索了从数据中学习经济解决方案,包括最佳拍卖设计、函数优化、合作游戏中的稳定收益等等。在这项工作中,我们为建模此类问题提供了一种统一的学习理论方法,并建立了确定是否可以从数据中有效学习给定解决方案概念的工具。我们的学习理论框架概括了函数空间维度的概念——图维度——使其适应解决方案概念学习领域。我们确定了有效解决方案可学习性的充分条件,并表明使用我们的方法可以立即得出现有工作中的结果。最后,我们将我们的方法应用于其他经济领域,产生竞争均衡和Condorcet赢家的学习变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Economics and Computation
ACM Transactions on Economics and Computation COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
3.80
自引率
0.00%
发文量
11
期刊介绍: The ACM Transactions on Economics and Computation welcomes submissions of the highest quality that concern the intersection of computer science and economics. Of interest to the journal is any topic relevant to both economists and computer scientists, including but not limited to the following: Agents in networks Algorithmic game theory Computation of equilibria Computational social choice Cost of strategic behavior and cost of decentralization ("price of anarchy") Design and analysis of electronic markets Economics of computational advertising Electronic commerce Learning in games and markets Mechanism design Paid search auctions Privacy Recommendation / reputation / trust systems Systems resilient against malicious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信