Large-Scale Generalized Linear Models for Longitudinal Data with Grouped Patterns of Unobserved Heterogeneity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
T. Ando, Jushan Bai
{"title":"Large-Scale Generalized Linear Models for Longitudinal Data with Grouped Patterns of Unobserved Heterogeneity","authors":"T. Ando, Jushan Bai","doi":"10.1080/07350015.2022.2097913","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article provides methods for flexibly capturing unobservable heterogeneity from longitudinal data in the context of an exponential family of distributions. The group memberships of individual units are left unspecified, and their heterogeneity is influenced by group-specific unobservable factor structures. The model includes, as special cases, probit, logit, and Poisson regressions with interactive fixed effects along with unknown group membership. We discuss a computationally efficient estimation method and derive the corresponding asymptotic theory. Uniform consistency of the estimated group membership is established. To test heterogeneous regression coefficients within groups, we propose a Swamy-type test that allows for unobserved heterogeneity. We apply the proposed method to the study of market structure of the taxi industry in New York City. Our method unveils interesting and important insights from large-scale longitudinal data that consist of over 450 million data points.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2097913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This article provides methods for flexibly capturing unobservable heterogeneity from longitudinal data in the context of an exponential family of distributions. The group memberships of individual units are left unspecified, and their heterogeneity is influenced by group-specific unobservable factor structures. The model includes, as special cases, probit, logit, and Poisson regressions with interactive fixed effects along with unknown group membership. We discuss a computationally efficient estimation method and derive the corresponding asymptotic theory. Uniform consistency of the estimated group membership is established. To test heterogeneous regression coefficients within groups, we propose a Swamy-type test that allows for unobserved heterogeneity. We apply the proposed method to the study of market structure of the taxi industry in New York City. Our method unveils interesting and important insights from large-scale longitudinal data that consist of over 450 million data points.
具有未观测异质性分组模式的纵向数据的大规模广义线性模型
摘要本文提供了在指数分布族的背景下,从纵向数据中灵活捕捉不可观测异质性的方法。个体单元的群体成员身份未明确,其异质性受到群体特定的不可观察因素结构的影响。作为特殊情况,该模型包括具有交互固定效应的probit、logit和Poisson回归以及未知的群成员关系。我们讨论了一种计算有效的估计方法,并导出了相应的渐近理论。建立了估计组成员的一致性。为了测试组内的异质回归系数,我们提出了一种允许未观察到的异质性的Swamy型检验。我们将所提出的方法应用于纽约市出租车行业的市场结构研究。我们的方法从由超过4.5亿个数据点组成的大规模纵向数据中揭示了有趣而重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信