Geometry of the normal ruled surfaces

V. N. Ivanov
{"title":"Geometry of the normal ruled surfaces","authors":"V. N. Ivanov","doi":"10.22363/1815-5235-2021-17-6-562-575","DOIUrl":null,"url":null,"abstract":"The wide circle of the surfaces formed by the motion of the right line in the normal plain of some base directrix curve is regarded. The generate right line may rotate at some low at the normal plane of the base curve. The vector equation of the surface with any plane or space base curve is received. There are given the formulas of the geometry characteristics of the surfaces, on the base of them there is shown that the coordinate system of the normal ruled surfaces is orthogonal but there is not conjugated in common, that is that the normal ruled surfaces there are not developable surfaces in common way. The condition of the rotation of directrix plane line when the coordinate system of the normal ruled surfaces will be conjugated and the normal ruled surface will be developable is received. The condition that the normal ruled surface with space base curve will be the developable surface there is connected with its curvature of base curve. The developable normal ruled surface with plane base curve is formed by motion of right line at the normal plane of the base curve with the constant angle to the plane of the base curve; the received surface is a surface of constant slope. On the base of the vector equation of the surfaces there are made the figures of the normal ruled surfaces with the help of program complex MathCAD.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2021-17-6-562-575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The wide circle of the surfaces formed by the motion of the right line in the normal plain of some base directrix curve is regarded. The generate right line may rotate at some low at the normal plane of the base curve. The vector equation of the surface with any plane or space base curve is received. There are given the formulas of the geometry characteristics of the surfaces, on the base of them there is shown that the coordinate system of the normal ruled surfaces is orthogonal but there is not conjugated in common, that is that the normal ruled surfaces there are not developable surfaces in common way. The condition of the rotation of directrix plane line when the coordinate system of the normal ruled surfaces will be conjugated and the normal ruled surface will be developable is received. The condition that the normal ruled surface with space base curve will be the developable surface there is connected with its curvature of base curve. The developable normal ruled surface with plane base curve is formed by motion of right line at the normal plane of the base curve with the constant angle to the plane of the base curve; the received surface is a surface of constant slope. On the base of the vector equation of the surfaces there are made the figures of the normal ruled surfaces with the help of program complex MathCAD.
法向直纹曲面的几何学
考虑了在某一基准准线曲线的法线平面上,由右直线的运动所形成的曲面的宽圆。生成的右线可以在基准曲线的法线平面上以某个低点旋转。接收具有任何平面或空间基曲线的曲面的矢量方程。给出了曲面几何特性的计算公式,在此基础上,证明了法向直纹曲面的坐标系是正交的,但不存在共轭的公共坐标系,即法向直条纹曲面不存在公共的可展曲面。得到了直纹曲面坐标系共轭且直纹曲面可展时直纹平面线旋转的条件。具有空间基曲线的法向直纹曲面为其可展曲面的条件与其基曲线的曲率有关。具有平面基曲线的可展法向直纹曲面是由右直线在基曲线的法向平面上以与基曲线平面成恒定角度运动而形成的;所接收的表面是具有恒定斜率的表面。在曲面的矢量方程的基础上,借助复杂的MathCAD程序,制作了法向直纹曲面的图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信