Above- and belowground biomass and biomass carbon stocks in homegarden agroforestry systems of different age groups at three sites of southern and southwestern Ethiopia
{"title":"Above- and belowground biomass and biomass carbon stocks in homegarden agroforestry systems of different age groups at three sites of southern and southwestern Ethiopia","authors":"G. Kassa, T. Bekele, S. Demissew, T. Abebe","doi":"10.1080/17583004.2022.2133743","DOIUrl":null,"url":null,"abstract":"Abstract As the loss of forests over time results in a net flux of carbon (C) into the atmosphere, the practice of agroforestry can combat this and serve as a long-term sink for CO2. Based on the inventory of 93 homegarden agroforestry systems (AFS) in three study sites and using a non-destructive method involving allometric equations, the research assessed aboveground (AG) and belowground (BG) biomass and biomass C stocks across sites and along age groups in homegarden AFS in southern and southwestern Ethiopia. Plant diversity parameters were also gathered on perennial plant species. Results indicate that the mean perennial plant species richness per homegarden agroforestry, and other diversity parameters varied strongly among sites (p < 0.05). Biomass C stocks range from 18.11 at Malo Ezo to 32.86 Mg C ha−1 at Saja Laften for AG, 3.97 to 7.10 Mg C ha−1 for BG, and 22.02 to 39.96 Mg C ha−1, for each respective sites, for the overall biomass C stocks were recorded within the homegarden agroforestry systems. In terms of age groups, the mean total biomass C stock did show numerical change from the initial, ≤10 years (22.49 Mg C ha−1) to the middle age group, >10 and ≤20 years (39.96 Mg C ha−1), but it was stagnant 20 years onward (28.49 Mg C ha−1). The homegarden agroforestry systems had the potential to store up to 80.81–112.30 Mg·ha−1 of CO2 equivalents across sites, and 82.53–104.55 Mg·ha−1 of CO2 equivalents along age groups. A positive relationship was noted between AG woody biomass C stocks and attributes such as woody species richness, and woody plant density. Considering the involvement of large numbers of homegardeners, future improvements and expansion of homegarden agroforestry to larger areas can enhance to a great extent the potential to sequester C and thereby mitigate climate change.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":"13 1","pages":"531 - 549"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2022.2133743","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract As the loss of forests over time results in a net flux of carbon (C) into the atmosphere, the practice of agroforestry can combat this and serve as a long-term sink for CO2. Based on the inventory of 93 homegarden agroforestry systems (AFS) in three study sites and using a non-destructive method involving allometric equations, the research assessed aboveground (AG) and belowground (BG) biomass and biomass C stocks across sites and along age groups in homegarden AFS in southern and southwestern Ethiopia. Plant diversity parameters were also gathered on perennial plant species. Results indicate that the mean perennial plant species richness per homegarden agroforestry, and other diversity parameters varied strongly among sites (p < 0.05). Biomass C stocks range from 18.11 at Malo Ezo to 32.86 Mg C ha−1 at Saja Laften for AG, 3.97 to 7.10 Mg C ha−1 for BG, and 22.02 to 39.96 Mg C ha−1, for each respective sites, for the overall biomass C stocks were recorded within the homegarden agroforestry systems. In terms of age groups, the mean total biomass C stock did show numerical change from the initial, ≤10 years (22.49 Mg C ha−1) to the middle age group, >10 and ≤20 years (39.96 Mg C ha−1), but it was stagnant 20 years onward (28.49 Mg C ha−1). The homegarden agroforestry systems had the potential to store up to 80.81–112.30 Mg·ha−1 of CO2 equivalents across sites, and 82.53–104.55 Mg·ha−1 of CO2 equivalents along age groups. A positive relationship was noted between AG woody biomass C stocks and attributes such as woody species richness, and woody plant density. Considering the involvement of large numbers of homegardeners, future improvements and expansion of homegarden agroforestry to larger areas can enhance to a great extent the potential to sequester C and thereby mitigate climate change.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.