An existence result for $p$-Laplace equation with gradient nonlinearity in $\mathbb{R}^N$

Q3 Mathematics
Shilpa Gupta, G. Dwivedi
{"title":"An existence result for $p$-Laplace equation with gradient nonlinearity\n in $\\mathbb{R}^N$","authors":"Shilpa Gupta, G. Dwivedi","doi":"10.46298/cm.9316","DOIUrl":null,"url":null,"abstract":"We prove the existence of a weak solution to the problem \\begin{equation*}\n\\begin{split} -\\Delta_{p}u+V(x)|u|^{p-2}u & =f(u,|\\nabla u|^{p-2}\\nabla u), \\ \\\n\\ \\\\ u(x) & >0\\ \\ \\forall x\\in\\mathbb{R}^{N}, \\end{split} \\end{equation*} where\n$\\Delta_{p}u=\\hbox{div}(|\\nabla u|^{p-2}\\nabla u)$ is the $p$-Laplace operator,\n$1<p<N$ and the nonlinearity\n$f:\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}$ is continuous and it\ndepends on gradient of the solution. We use an iterative technique based on the\nMountain pass theorem to prove our existence result.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.9316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of a weak solution to the problem \begin{equation*} \begin{split} -\Delta_{p}u+V(x)|u|^{p-2}u & =f(u,|\nabla u|^{p-2}\nabla u), \ \ \ \\ u(x) & >0\ \ \forall x\in\mathbb{R}^{N}, \end{split} \end{equation*} where $\Delta_{p}u=\hbox{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplace operator, $1
$\mathbb{R}^N$中具有梯度非线性的$p$-拉普拉斯方程的存在性结果
我们证明了问题\ begin{方程*}\ begin{split}-\Delta的弱解的存在性_{p}u+V(x)|u|^{p-2}u&=f(u,|\nabla u|^{p-2}\nabla u),\\\\u(x)&>0\\\for all x\in\mathbb{R}^{N},\end{split}\end{equipment*}其中$\Delta_{p}u=\hbox{div}(|\nabla u|^{p-2}\nabla u)$是$p$-拉普拉斯算子,$1<p<N$,非线性$f:\mathbb{R}\times\mathbb{R}^{N}\rightarrow\mathbb{R}$是连续的,它取决于解的梯度。我们使用一种基于山口定理的迭代技术来证明我们的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信