Threshold Behavior of an Age-structured Tumor Immune Model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhong Luo, Zijian Liu, Yuanshun Tan, Jin Yang, Huanhuan Qiu
{"title":"Threshold Behavior of an Age-structured Tumor Immune Model","authors":"Zhong Luo, Zijian Liu, Yuanshun Tan, Jin Yang, Huanhuan Qiu","doi":"10.1051/mmnp/2023001","DOIUrl":null,"url":null,"abstract":"In this paper, we present and analyze an age-structured tumor immune model. Based on the fact that tumor cells of different ages tend to exhibit different physiological behaviors, we consider the age structure of tumor cells, age-based proliferation function and age-dependent death function in the model. The threshold $\\mathfrak{R}_{0}$ for the existence of tumor-free steady state is derived. It is found that if $\\mathfrak{R}_{0}<1$, the tumor-free steady state is not only locally stable but also globally stable. Moreover, numerical simulation shows that the threshold $\\mathfrak{R}_{0}$ may be regarded as an index to reflect the ability of ``tumor immune surveillance\", \\ie, the smaller the $\\mathfrak{R}_{0}$, the better the ability of tumor immune surveillance. If $\\mathfrak{R}_{0}>1$, it is proved that the tumor steady state is existent  and uniformly persistent. The local stability of the tumor steady state is investigated under some further conditions besides $\\mathfrak{R}_{0}>1$. In the end, we estimate the system parameters, verify the theoretical results and analyze some system  parameters' sensitivities.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present and analyze an age-structured tumor immune model. Based on the fact that tumor cells of different ages tend to exhibit different physiological behaviors, we consider the age structure of tumor cells, age-based proliferation function and age-dependent death function in the model. The threshold $\mathfrak{R}_{0}$ for the existence of tumor-free steady state is derived. It is found that if $\mathfrak{R}_{0}<1$, the tumor-free steady state is not only locally stable but also globally stable. Moreover, numerical simulation shows that the threshold $\mathfrak{R}_{0}$ may be regarded as an index to reflect the ability of ``tumor immune surveillance", \ie, the smaller the $\mathfrak{R}_{0}$, the better the ability of tumor immune surveillance. If $\mathfrak{R}_{0}>1$, it is proved that the tumor steady state is existent  and uniformly persistent. The local stability of the tumor steady state is investigated under some further conditions besides $\mathfrak{R}_{0}>1$. In the end, we estimate the system parameters, verify the theoretical results and analyze some system  parameters' sensitivities.
年龄结构肿瘤免疫模型的阈值行为
在本文中,我们提出并分析了一个年龄结构的肿瘤免疫模型。基于不同年龄的肿瘤细胞往往表现出不同的生理行为,我们在模型中考虑了肿瘤细胞的年龄结构、年龄基础的增殖功能和年龄依赖的死亡功能。导出了无肿瘤稳态存在的阈值$\mathfrak{R}_{0}$。发现,如果$\mathfrak{R}_{0}1$,则证明了肿瘤稳态是存在且一致持久的。在$\mathfrak{R}_{0}>1$以外的其他条件下,研究了肿瘤稳态的局部稳定性。最后对系统参数进行了估计,验证了理论结果,并对部分系统参数的灵敏度进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信