An implementation framework for vision-based bat-like inverted perching with bi-directionalthrust quadrotor

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Pengfei Yu, K. Wong
{"title":"An implementation framework for vision-based bat-like inverted perching with bi-directionalthrust quadrotor","authors":"Pengfei Yu, K. Wong","doi":"10.1177/17568293211073672","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation framework to perform a vision-guided, bat-like inverted perching maneuver with a bi-directional thrust quadrotor platform. The framework consists of several distinct modules (guidance, motion planning, control, state estimation) that can be easily be individually customized in the future to meet specific research requirements. The main contribution of this paper lies in the whole framework pipeline with a modular structure developed for implementing a generalized framework for an agile quadrotor to achieve inverted perching. A computationally-light guidance module has been developed as an example to demonstrate the capability while being independent of accurate pre-known target information, and does not require the state estimation of the quadrotor to be provided by an external motion capture system as in our previous work. A motion planning module based on an optimization method has been introduced to generate a two-stage inverted perching trajectory aiming at minimizing altitude loss during the half-flip maneuver. A control module has been developed to enable a bi-directional quadrotor to fly in both upright and inverted states and closely follow the intended trajectory. The compensation strategy used in the control module is key to minimizing the transition time between the upright and inverted states. Finally, an experimental flight platform has been developed to demonstrate the capabilities of the framework. During testing, the proposed framework has achieved an 80 % success rate. To the best of our knowledge, this paper presents the first time a quadrotor has achieved the inverted perching maneuver using onboard vision guidance.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211073672","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an implementation framework to perform a vision-guided, bat-like inverted perching maneuver with a bi-directional thrust quadrotor platform. The framework consists of several distinct modules (guidance, motion planning, control, state estimation) that can be easily be individually customized in the future to meet specific research requirements. The main contribution of this paper lies in the whole framework pipeline with a modular structure developed for implementing a generalized framework for an agile quadrotor to achieve inverted perching. A computationally-light guidance module has been developed as an example to demonstrate the capability while being independent of accurate pre-known target information, and does not require the state estimation of the quadrotor to be provided by an external motion capture system as in our previous work. A motion planning module based on an optimization method has been introduced to generate a two-stage inverted perching trajectory aiming at minimizing altitude loss during the half-flip maneuver. A control module has been developed to enable a bi-directional quadrotor to fly in both upright and inverted states and closely follow the intended trajectory. The compensation strategy used in the control module is key to minimizing the transition time between the upright and inverted states. Finally, an experimental flight platform has been developed to demonstrate the capabilities of the framework. During testing, the proposed framework has achieved an 80 % success rate. To the best of our knowledge, this paper presents the first time a quadrotor has achieved the inverted perching maneuver using onboard vision guidance.
基于视觉的双向推力四旋翼类蝙蝠倒立栖息实现框架
本文提出了一个实现框架,用于在双向推力四旋翼平台上执行视觉引导的蝙蝠状倒立栖息机动。该框架由几个不同的模块(指导、运动规划、控制、状态估计)组成,这些模块可以在未来轻松地进行单独定制,以满足特定的研究要求。本文的主要贡献在于开发了一个模块化结构的整个框架管道,用于实现敏捷四旋翼机的通用框架,以实现反向栖息。已经开发了一个计算轻型制导模块作为示例,以证明该能力,同时独立于准确的已知目标信息,并且不需要像我们之前的工作中那样由外部运动捕获系统提供四旋翼的状态估计。介绍了一种基于优化方法的运动规划模块,用于生成两阶段反向栖息轨迹,旨在最大限度地减少半翻转机动过程中的高度损失。已经开发了一种控制模块,使双向四旋翼飞机能够在直立和倒置状态下飞行,并紧密遵循预期轨迹。控制模块中使用的补偿策略是最小化直立和倒置状态之间的过渡时间的关键。最后,开发了一个实验飞行平台来展示该框架的能力。在测试过程中,所提出的框架获得了80%的成功率。据我们所知,本文介绍了四旋翼飞行器首次使用机载视觉制导实现倒立栖息机动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信