Pierre Moukala Mpele, Franck Moukanda Mbango, D. Konditi, Ce Lakpo Bamy, Felix Urimubenshi
{"title":"Compact quadband two-port antenna with metamaterial cell-inspired decoupling parasitic element for mobile wireless applications","authors":"Pierre Moukala Mpele, Franck Moukanda Mbango, D. Konditi, Ce Lakpo Bamy, Felix Urimubenshi","doi":"10.1515/freq-2021-0299","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a quadband MIMO diamond-shaped antenna with two highly isolated elements is proposed and discussed. A novel metamaterial cell-inspired decoupling parasitic structure is deployed between the two antenna elements to achieve high isolation greater than 20 dB in the frequency bands of interest. Moreover, the design adopts a defected ground structure and open-ended multiple diamond-shaped branches for multiband characteristics, enabling the proposed MIMO to cover several modern wireless applications. The performance metrics of the proposed MIMO antenna are validated by evaluating various diversity parameters such as envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity loss (CCL). This antenna is fabricated on an FR4 substrate with a compact size of 12 × 30 × 1.524 mm (0.082λ0 × 0.204λ0 × 0.001λ0, λ0 is the wavelength at 2.04 GHz). With the edge-to-edge separation distance of 0.053λ0 between the antenna elements, its prototype is experimentally measured using a two-port Rohde & Schwarz ZVA50 Vector Network Analyzer. The port-to-port isolation is about −20.87 dB, −23 dB, −25.93 dB, and −25.22 dB for 2.3 GHz, 3.18 GHz, 4.08 GHz, and 5.42 GHz frequency bands, respectively. Also, the proposed MIMO antenna exhibits good diversity performances with the ECC < 0.005, DG > 9.99, and TARC<−10 dB making it an outstanding candidate covering 4G/LTE, 5G NR sub-6 GHz n40/n41/n77/n78, Wi-Fi, WiMAX, ISM, WBAN, Bluetooth, MBAN, WiBro, C-V2X, and UWB applications.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"77 1","pages":"63 - 76"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2021-0299","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this paper, a quadband MIMO diamond-shaped antenna with two highly isolated elements is proposed and discussed. A novel metamaterial cell-inspired decoupling parasitic structure is deployed between the two antenna elements to achieve high isolation greater than 20 dB in the frequency bands of interest. Moreover, the design adopts a defected ground structure and open-ended multiple diamond-shaped branches for multiband characteristics, enabling the proposed MIMO to cover several modern wireless applications. The performance metrics of the proposed MIMO antenna are validated by evaluating various diversity parameters such as envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity loss (CCL). This antenna is fabricated on an FR4 substrate with a compact size of 12 × 30 × 1.524 mm (0.082λ0 × 0.204λ0 × 0.001λ0, λ0 is the wavelength at 2.04 GHz). With the edge-to-edge separation distance of 0.053λ0 between the antenna elements, its prototype is experimentally measured using a two-port Rohde & Schwarz ZVA50 Vector Network Analyzer. The port-to-port isolation is about −20.87 dB, −23 dB, −25.93 dB, and −25.22 dB for 2.3 GHz, 3.18 GHz, 4.08 GHz, and 5.42 GHz frequency bands, respectively. Also, the proposed MIMO antenna exhibits good diversity performances with the ECC < 0.005, DG > 9.99, and TARC<−10 dB making it an outstanding candidate covering 4G/LTE, 5G NR sub-6 GHz n40/n41/n77/n78, Wi-Fi, WiMAX, ISM, WBAN, Bluetooth, MBAN, WiBro, C-V2X, and UWB applications.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.