Determination of Sleep Apnea Severity Using Multi-Layer Perceptron Neural Network

Q4 Medicine
Z. Kohzadi, R. Safdari, K. Haghighi
{"title":"Determination of Sleep Apnea Severity Using Multi-Layer Perceptron Neural Network","authors":"Z. Kohzadi, R. Safdari, K. Haghighi","doi":"10.17241/smr.2020.00689","DOIUrl":null,"url":null,"abstract":"Background and ObjectiveaaSleep apnea is a rather common illness, which occurs due to dyspnea during night sleep. The effects of this illness can cause problems in the patient’s life and affect its quality. Therefore, its timely diagnosis, using machine algorithms can be an important step towards preventing and controlling this illness. MethodsaaIn this study is using artificial neural networks, in order to detect the severity of sleep apnea among 200 patients, who visited the Imam Khomeini sleep clinic in Tehran. Then the artificial neural network with the structure (8-10-3-1), Sigmoid transfer function and 120 educational cycles were designed and educated based on 70% of the data at hand. The artificial neural network was designed, using MATLAB2018. ResultsaaUsing the multi-layer perceptron classifier with 10-fold cross validation tests led to 96.5%, 92.4%, 91.5% and 94.5% correctness, respectively for normal, mild, moderate and severe classifications. Enough correctness of the algorithm reduces the patients’ need to take the polysomnography test. ConclusionsaaThe results show that using artificial neural network can be useful in detecting the sleep apnea severity, without using costly tests and limited PSG. Sleep Med Res 2020;11(2):70-76","PeriodicalId":37318,"journal":{"name":"Sleep Medicine Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep Medicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17241/smr.2020.00689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

Background and ObjectiveaaSleep apnea is a rather common illness, which occurs due to dyspnea during night sleep. The effects of this illness can cause problems in the patient’s life and affect its quality. Therefore, its timely diagnosis, using machine algorithms can be an important step towards preventing and controlling this illness. MethodsaaIn this study is using artificial neural networks, in order to detect the severity of sleep apnea among 200 patients, who visited the Imam Khomeini sleep clinic in Tehran. Then the artificial neural network with the structure (8-10-3-1), Sigmoid transfer function and 120 educational cycles were designed and educated based on 70% of the data at hand. The artificial neural network was designed, using MATLAB2018. ResultsaaUsing the multi-layer perceptron classifier with 10-fold cross validation tests led to 96.5%, 92.4%, 91.5% and 94.5% correctness, respectively for normal, mild, moderate and severe classifications. Enough correctness of the algorithm reduces the patients’ need to take the polysomnography test. ConclusionsaaThe results show that using artificial neural network can be useful in detecting the sleep apnea severity, without using costly tests and limited PSG. Sleep Med Res 2020;11(2):70-76
应用多层感知器神经网络测定睡眠呼吸暂停严重程度
背景与目的睡眠呼吸暂停是一种比较常见的疾病,它是由于夜间睡眠呼吸困难引起的。这种疾病的影响可能会给患者的生活带来问题,并影响其质量。因此,使用机器算法对其进行及时诊断可以成为预防和控制这种疾病的重要一步。方法在这项研究中,使用人工神经网络来检测200名患者的睡眠呼吸暂停的严重程度,这些患者访问了德黑兰的伊玛目霍梅尼睡眠诊所。然后,基于70%的现有数据,设计并教育了具有结构(8-10-3-1)、Sigmoid传递函数和120个教育周期的人工神经网络。使用MATLAB2018设计了人工神经网络。结果a使用多层感知器分类器进行10次交叉验证测试,对正常、轻度、中度和重度分类的正确率分别为96.5%、92.4%、91.5%和94.5%。算法的足够正确性减少了患者进行多导睡眠图测试的需要。结论saa结果表明,使用人工神经网络可以在不使用昂贵的测试和有限的PSG的情况下检测睡眠呼吸暂停的严重程度。睡眠医学研究2020;11(2):70-76
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sleep Medicine Research
Sleep Medicine Research Medicine-Neurology (clinical)
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信