{"title":"Some two-point boundary value problems for systems of higher order functional differential equations","authors":"S. Mukhigulashvili","doi":"10.7146/math.scand.a-126021","DOIUrl":null,"url":null,"abstract":"In the paper we study the question of the solvability and unique solvability of systems of the higher order differential equations with the argument deviations \\begin{equation*} u_i^{(m_i)}(t)=p_i(t)u_{i+1}(\\tau _{i}(t))+ q_i(t), (i=\\overline {1, n}), \\text {for $t\\in I:=[a, b]$}, \\end{equation*} and \\begin{equation*}u_i^{(m_i)} (t)=F_{i}(u)(t)+q_{0i}(t), (i = \\overline {1, n}), \\text {for $ t\\in I$}, \\end{equation*} under the conjugate $u_i^{(j_1-1)}(a)=a_{i j_1}$, $u_i^{(j_2-1)}(b)=b_{i j_2}$, $j_1=\\overline {1, k_i}$, $j_2=\\overline {1, m_i-k_i}$, $i=\\overline {1, n}$, and the right-focal $u_i^{(j_1-1)}(a)=a_{i j_1}$, $u_i^{(j_2-1)}(b)=b_{i j_2}$, $j_1=\\overline {1, k_i}$, $j_2=\\overline {k_i+1,m_i}$, $i=\\overline {1, n}$, boundary conditions, where $u_{n+1}=u_1, $ $n\\geq 2, $ $m_i\\geq 2, $ $p_i \\in L_{\\infty }(I; R), $ $q_i, q_{0i}\\in L(I; R), $ $\\tau _i\\colon I\\to I$ are the measurable functions, $F_i$ are the local Caratheodory's class operators, and $k_i$ is the integer part of the number $m_i/2$.In the paper are obtained the efficient sufficient conditions that guarantee the unique solvability of the linear problems and take into the account explicitly the effect of argument deviations, and on the basis of these results are proved new conditions of the solvability and unique solvability for the nonlinear problems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper we study the question of the solvability and unique solvability of systems of the higher order differential equations with the argument deviations \begin{equation*} u_i^{(m_i)}(t)=p_i(t)u_{i+1}(\tau _{i}(t))+ q_i(t), (i=\overline {1, n}), \text {for $t\in I:=[a, b]$}, \end{equation*} and \begin{equation*}u_i^{(m_i)} (t)=F_{i}(u)(t)+q_{0i}(t), (i = \overline {1, n}), \text {for $ t\in I$}, \end{equation*} under the conjugate $u_i^{(j_1-1)}(a)=a_{i j_1}$, $u_i^{(j_2-1)}(b)=b_{i j_2}$, $j_1=\overline {1, k_i}$, $j_2=\overline {1, m_i-k_i}$, $i=\overline {1, n}$, and the right-focal $u_i^{(j_1-1)}(a)=a_{i j_1}$, $u_i^{(j_2-1)}(b)=b_{i j_2}$, $j_1=\overline {1, k_i}$, $j_2=\overline {k_i+1,m_i}$, $i=\overline {1, n}$, boundary conditions, where $u_{n+1}=u_1, $ $n\geq 2, $ $m_i\geq 2, $ $p_i \in L_{\infty }(I; R), $ $q_i, q_{0i}\in L(I; R), $ $\tau _i\colon I\to I$ are the measurable functions, $F_i$ are the local Caratheodory's class operators, and $k_i$ is the integer part of the number $m_i/2$.In the paper are obtained the efficient sufficient conditions that guarantee the unique solvability of the linear problems and take into the account explicitly the effect of argument deviations, and on the basis of these results are proved new conditions of the solvability and unique solvability for the nonlinear problems.
在本文中,我们研究了具有变元偏差的高阶微分方程组的可解性和唯一可解性问题\ begin{equipment*}u_i^{(m_i)}q_{0i}(t),(i=\overline{1,n}),\text{for$t\ in I$},\ end{方程*}在共轭$u_I^{(j_1-1)}(a)=a_{ij_1}$,$u_I^{(j_2-1)}(b)=b_{ij2}$,$j_1=\overline{1,k_I}$,$j_2=\overline{1,m_I-k_I}$,$I=\overline{1,n}$下,和右焦点$u_I^2{(j-1-1)}^{(j2-1)}(b)=b_{ij2}$,$j_1=\overline{1,k_I}$,$j2=\overline{k_I+1,m_I}$,$I=\overline{1,n}$,边界条件,其中$u_{n+1}=u1,L(i;R)中的$$n\geq2、$$m_i\geq2和$$p_i\是可测量函数,$F_i$是局部Caratheodory类运算符,并且$k_i$是数$m_i/2$的整数部分。本文得到了保证线性问题唯一可解性的有效充分条件,并明确考虑了自变量偏差的影响,在此基础上证明了非线性问题可解性和唯一可解的新条件。