Local temperature near native vascular plants in the Argentine Islands–Kyiv Peninsula region, Antarctic Peninsula: annual variability and approximation using standard meteorological measurements
M. Savenets, L. Pysarenko, S. Krakovska, I. Parnikoza, D. Pishniak
{"title":"Local temperature near native vascular plants in the Argentine Islands–Kyiv Peninsula region, Antarctic Peninsula: annual variability and approximation using standard meteorological measurements","authors":"M. Savenets, L. Pysarenko, S. Krakovska, I. Parnikoza, D. Pishniak","doi":"10.33265/polar.v42.8339","DOIUrl":null,"url":null,"abstract":"We describe the main features of LT variability that influence native vascular plants in the Antarctic and examine the relationship between the temperature regime at the micro-level and meteorological conditions at the macro-level. We used a period of over a year, during which 37 specialized mini-loggers recorded LT near vascular plants in the Argentine Islands–Kyiv Peninsula region of the Antarctic Peninsula. Rather than measuring standard air or soil temperature, these loggers detect the temperature near the ground, in the microhabitats that harbour vascular plants. On a daily scale, LT correlates with standard (2-m) air temperature, with the values higher at rock slopes than at rock terraces and ledges. A moderate correlation was found with wind and radiation parameters. Seasonality accounted for 75–93% of total LT variability, with better results on open rock terraces compared to protected areas and clefts. LT day-to-day variability during the cold season is mostly responsible for differences in R2 of the annual cycle. We estimated daily mean LT using regression dependencies from 2-m air temperature and wind speed measured at a nearby meteorological station. R2 for these statistical models varies from 0.46 to 0.68. However, they underestimate the observed LT. LT measured on rock slopes showed better modelling results with air temperature, whereas wind speed was a better predictor on rock ledges. This study contributes to our understanding of the micro-scale temperature regime that influences native vascular plants and provides a method for its rough approximation using standard meteorological parameters.","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v42.8339","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the main features of LT variability that influence native vascular plants in the Antarctic and examine the relationship between the temperature regime at the micro-level and meteorological conditions at the macro-level. We used a period of over a year, during which 37 specialized mini-loggers recorded LT near vascular plants in the Argentine Islands–Kyiv Peninsula region of the Antarctic Peninsula. Rather than measuring standard air or soil temperature, these loggers detect the temperature near the ground, in the microhabitats that harbour vascular plants. On a daily scale, LT correlates with standard (2-m) air temperature, with the values higher at rock slopes than at rock terraces and ledges. A moderate correlation was found with wind and radiation parameters. Seasonality accounted for 75–93% of total LT variability, with better results on open rock terraces compared to protected areas and clefts. LT day-to-day variability during the cold season is mostly responsible for differences in R2 of the annual cycle. We estimated daily mean LT using regression dependencies from 2-m air temperature and wind speed measured at a nearby meteorological station. R2 for these statistical models varies from 0.46 to 0.68. However, they underestimate the observed LT. LT measured on rock slopes showed better modelling results with air temperature, whereas wind speed was a better predictor on rock ledges. This study contributes to our understanding of the micro-scale temperature regime that influences native vascular plants and provides a method for its rough approximation using standard meteorological parameters.
期刊介绍:
Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public.
Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time.
The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.