The equivalence of several conjectures on independence of $\ell$

IF 0.9 Q2 MATHEMATICS
R. V. D. D. Bruyn
{"title":"The equivalence of several conjectures on independence of $\\ell$","authors":"R. V. D. D. Bruyn","doi":"10.46298/epiga.2020.volume4.5570","DOIUrl":null,"url":null,"abstract":"We consider several conjectures on the independence of $\\ell$ of the \\'etale\ncohomology of (singular, open) varieties over $\\bar{\\mathbf F}_p$. The main\nresult is that independence of $\\ell$ of the Betti numbers\n$h^i_{\\text{c}}(X,\\mathbf Q_\\ell)$ for arbitrary varieties is equivalent to\nindependence of $\\ell$ of homological equivalence $\\sim_{\\text{hom},\\ell}$ for\ncycles on smooth projective varieties. We give several other equivalent\nstatements. As a surprising consequence, we prove that independence of $\\ell$\nof Betti numbers for smooth quasi-projective varieties implies the same result\nfor arbitrary separated finite type $k$-schemes.\n\n Comment: Published version. 27 pages","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2020.volume4.5570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider several conjectures on the independence of $\ell$ of the \'etale cohomology of (singular, open) varieties over $\bar{\mathbf F}_p$. The main result is that independence of $\ell$ of the Betti numbers $h^i_{\text{c}}(X,\mathbf Q_\ell)$ for arbitrary varieties is equivalent to independence of $\ell$ of homological equivalence $\sim_{\text{hom},\ell}$ for cycles on smooth projective varieties. We give several other equivalent statements. As a surprising consequence, we prove that independence of $\ell$ of Betti numbers for smooth quasi-projective varieties implies the same result for arbitrary separated finite type $k$-schemes. Comment: Published version. 27 pages
关于$ $ $独立性的若干猜想的等价性
我们考虑了$\bar{\mathbf F}_p$上(奇异的,开放的)变种的 生态同源性$\ell$的独立性的几个猜想。主要结果是:对于任意变量,Betti数$h^i_{\text{c}}(X,\mathbf Q_\ell)$的独立性$\ell$等价于光滑射影变量上环的同调等价$\sim_{\text{hom},\ell}$的独立性$\ell$。我们给出了其他几个等价的表述。作为一个令人惊讶的结果,我们证明了光滑拟射精变异体Betti数$\ell$的独立性对于任意分离的有限型$k$ -格式具有相同的结果。评论:已发布版本。27页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信