Effect of Synthetic Approaches and Sintering Additives upon Physicochemical and Electrophysical Properties of Solid Solutions in the System (CeO2)1−x(Nd2O3)x for Fuel Cell Electrolytes
M. Kalinina, D. A. Dyuskina, I. Polyakova, S. Mjakin, I. Kruchinina
{"title":"Effect of Synthetic Approaches and Sintering Additives upon Physicochemical and Electrophysical Properties of Solid Solutions in the System (CeO2)1−x(Nd2O3)x for Fuel Cell Electrolytes","authors":"M. Kalinina, D. A. Dyuskina, I. Polyakova, S. Mjakin, I. Kruchinina","doi":"10.3390/ceramics6020065","DOIUrl":null,"url":null,"abstract":"Finely dispersed (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders are synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and co-crystallization of nitrates. The prepared powders are used to obtain ceramic materials comprising fluorite-like solid solutions with the coherent scattering region (CSR) of about 88 nm (upon annealing at 1300 °C) and open porosity in the range of 1–15%. The effect of the synthesis procedure and sintering additives (SiO2, ZnO) on physicochemical and electrophysical properties of the resulting ceramics is studied. The prepared materials are found to possess a predominantly ionic type of electric conductivity with ion transfer numbers ti = 0.96–0.71 in the temperature range of 300–700 °C. The conductivity in solid solutions follows a vacancy mechanism with σ700 °C = 0.48 × 10−2 S/cm. Physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6020065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Finely dispersed (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders are synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and co-crystallization of nitrates. The prepared powders are used to obtain ceramic materials comprising fluorite-like solid solutions with the coherent scattering region (CSR) of about 88 nm (upon annealing at 1300 °C) and open porosity in the range of 1–15%. The effect of the synthesis procedure and sintering additives (SiO2, ZnO) on physicochemical and electrophysical properties of the resulting ceramics is studied. The prepared materials are found to possess a predominantly ionic type of electric conductivity with ion transfer numbers ti = 0.96–0.71 in the temperature range of 300–700 °C. The conductivity in solid solutions follows a vacancy mechanism with σ700 °C = 0.48 × 10−2 S/cm. Physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.