{"title":"Detection of tiger puffer using improved YOLOv5 with prior knowledge fusion","authors":"","doi":"10.1016/j.inpa.2023.02.010","DOIUrl":null,"url":null,"abstract":"<div><p>Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000203/pdfft?md5=30fd08109e365823c7cc20853e938648&pid=1-s2.0-S2214317323000203-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000203","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.