On the local convergence of higher order methods in Banach spaces

Pub Date : 2021-07-01 DOI:10.24193/fpt-ro.2021.2.55
Debasis Sharma, S. K. Parhi
{"title":"On the local convergence of higher order methods in Banach spaces","authors":"Debasis Sharma, S. K. Parhi","doi":"10.24193/fpt-ro.2021.2.55","DOIUrl":null,"url":null,"abstract":"We study the local convergence analysis of two higher-order methods using Hölder continuity condition on the first Fréchet derivative to solve nonlinear equations in Banach spaces. Hölder continuous first derivative is used to extend the applicability of the method on such problems for which Lipschitz condition fails. Also, this convergence analysis generalizes the local convergence analysis based on Lipschitz continuity condition. Our analysis provides the radius of convergence ball and error bounds along with the uniqueness of the solution. Numerical examples like Hammerstein integral equation and a system of nonlinear equations are solved to verify our theoretical results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2021.2.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the local convergence analysis of two higher-order methods using Hölder continuity condition on the first Fréchet derivative to solve nonlinear equations in Banach spaces. Hölder continuous first derivative is used to extend the applicability of the method on such problems for which Lipschitz condition fails. Also, this convergence analysis generalizes the local convergence analysis based on Lipschitz continuity condition. Our analysis provides the radius of convergence ball and error bounds along with the uniqueness of the solution. Numerical examples like Hammerstein integral equation and a system of nonlinear equations are solved to verify our theoretical results.
分享
查看原文
Banach空间中高阶方法的局部收敛性
本文研究了两种高阶方法在求解Banach空间非线性方程时的局部收敛性分析,并利用Hölder在一阶fr切特导数上的连续性条件。Hölder采用连续一阶导数扩展了该方法在Lipschitz条件不成立的情况下的适用性。同时,对基于Lipschitz连续性条件的局部收敛分析进行了推广。我们的分析给出了收敛球半径和误差界以及解的唯一性。通过求解Hammerstein积分方程和非线性方程组等数值实例,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信