AN INVARIANT DERIVED FROM THE ALEXANDER POLYNOMIAL FOR HANDLEBODY-KNOTS

IF 0.5 4区 数学 Q3 MATHEMATICS
S. Okazaki
{"title":"AN INVARIANT DERIVED FROM THE ALEXANDER POLYNOMIAL FOR HANDLEBODY-KNOTS","authors":"S. Okazaki","doi":"10.18910/76683","DOIUrl":null,"url":null,"abstract":"A handlebody-knot is a handlebody embedded in the 3-sphere. We introduce an invariant for handlebody-knots derived from their Alexander polynomials. The value of the invariant is a vertex-weighted graph. As an application, we describe a sufficient condition for a handlebody-knot to be irreducible and a necessary condition for a link to be a constituent link of a handlebody-knot.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"737-750"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/76683","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A handlebody-knot is a handlebody embedded in the 3-sphere. We introduce an invariant for handlebody-knots derived from their Alexander polynomials. The value of the invariant is a vertex-weighted graph. As an application, we describe a sufficient condition for a handlebody-knot to be irreducible and a necessary condition for a link to be a constituent link of a handlebody-knot.
柄体结的亚历山大多项式的不变量
手柄本体结是嵌入在3球体中的手柄本体。我们引入了由亚历山大多项式导出的手柄体结的不变量。不变量的值是一个顶点加权图。作为一个应用,我们描述了把手结是不可约的一个充分条件和一个环节是把手结的组成环节的一个必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信