COMPARATIVE ANALYSIS ON NUMERICAL MODELLING AND EXPERIMENTS OF THE CUTTING TEMPERATURE IN MAGNETIC ABRASIVE FINISHING PROCESS

A. Kadhum
{"title":"COMPARATIVE ANALYSIS ON NUMERICAL MODELLING AND EXPERIMENTS OF THE CUTTING TEMPERATURE IN MAGNETIC ABRASIVE FINISHING PROCESS","authors":"A. Kadhum","doi":"10.32852/IQJFMME.V19I1.260","DOIUrl":null,"url":null,"abstract":"In Magnetic Abrasive Finishing (MAF) process the cutting temperature is generated from two sources, from the electromagnetic flux (electrical heat), and from magnetic abrasive brush due to the friction force (mechanical heat). The cutting temperature has significant effects upon the condition of the surface, whereas it is less studied than the other parameters. In this study, an attempt has been made to simulate and investigate the influence of cutting parameters on the cutting temperature, to improve the thermal effect by MAF process. The aims of this study was to determine the distribution of the cutting temperature in the working gap, numerically and experimentally, then compared the results. In addition, to determine the most influence parameters affecting on the cutting temperature for Brass alloy CuZn28. Two dimensional Finite Element Models (FEM) with two software’s were developed to predict the temperature by dynamic electric and magnetic field, the first was DEFORM 10.2 used to calculate the mechanical heat and the second was COMSOL5.2 used to calculate the electrical heat. Sixteen tests designed according to Taguchi matrix through the orthogonal array (OA) L16 (). There are four various parameters that, have a large impact on cutting temperature, with four levels (rotational speed (A), working time (B), current (C), and working gap (D)). The analysis of the variance (ANOVA) technique was utilized to analysis the results, by using the statistical software (MINITAB-17). From the results, it is concluded that the Numerical modeling gives a very good comparison with the values of experimental tests. The maximum difference between the numerical and experimental temperature for brass CuZn28 is less than (9%).","PeriodicalId":31812,"journal":{"name":"Iraqi Journal for Mechanical and Materials Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32852/IQJFMME.V19I1.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In Magnetic Abrasive Finishing (MAF) process the cutting temperature is generated from two sources, from the electromagnetic flux (electrical heat), and from magnetic abrasive brush due to the friction force (mechanical heat). The cutting temperature has significant effects upon the condition of the surface, whereas it is less studied than the other parameters. In this study, an attempt has been made to simulate and investigate the influence of cutting parameters on the cutting temperature, to improve the thermal effect by MAF process. The aims of this study was to determine the distribution of the cutting temperature in the working gap, numerically and experimentally, then compared the results. In addition, to determine the most influence parameters affecting on the cutting temperature for Brass alloy CuZn28. Two dimensional Finite Element Models (FEM) with two software’s were developed to predict the temperature by dynamic electric and magnetic field, the first was DEFORM 10.2 used to calculate the mechanical heat and the second was COMSOL5.2 used to calculate the electrical heat. Sixteen tests designed according to Taguchi matrix through the orthogonal array (OA) L16 (). There are four various parameters that, have a large impact on cutting temperature, with four levels (rotational speed (A), working time (B), current (C), and working gap (D)). The analysis of the variance (ANOVA) technique was utilized to analysis the results, by using the statistical software (MINITAB-17). From the results, it is concluded that the Numerical modeling gives a very good comparison with the values of experimental tests. The maximum difference between the numerical and experimental temperature for brass CuZn28 is less than (9%).
磁磨料精加工过程切削温度的数值模拟与实验对比分析
在磁磨料精加工(MAF)过程中,切割温度由两个来源产生,一个是电磁通量(电热),另一个是磁磨料刷由于摩擦力(机械热)产生的温度。切削温度对表面状态的影响较大,但与其他参数相比,研究较少。本研究试图模拟和研究切削参数对切削温度的影响,以提高MAF工艺的热效应。本研究的目的是确定切削温度在工作间隙的分布,数值和实验,然后比较结果。此外,确定了对CuZn28黄铜合金切削温度影响最大的参数。采用DEFORM 10.2和COMSOL5.2两种软件分别建立了基于动态电场和磁场的二维有限元模型,分别用于计算机械热和电热。根据田口矩阵通过正交阵列(OA) L16()设计了16个试验。对切削温度有较大影响的各种参数有四个等级(转速(a)、工作时间(B)、电流(C)、工作间隙(D))。采用MINITAB-17统计软件,采用方差分析(ANOVA)技术对结果进行分析。结果表明,数值模拟结果与试验结果有很好的对比。CuZn28黄铜的数值温度与实验温度的最大差异小于(9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信