Hybrid hyper-Fibonacci and hyper-Lucas numbers

IF 0.4 Q4 MATHEMATICS
Yasemin Alp
{"title":"Hybrid hyper-Fibonacci and hyper-Lucas numbers","authors":"Yasemin Alp","doi":"10.7546/nntdm.2023.29.1.154-170","DOIUrl":null,"url":null,"abstract":"Different number systems have been studied lately. Recently, many researchers have considered the hybrid numbers which are generalization of the complex, hyperbolic and dual number systems. In this paper, we define the hybrid hyper-Fibonacci and hyper-Lucas numbers. Furthermore, we obtain some algebraic properties of these numbers such as the recurrence relations, the generating functions, the Binet’s formulas, the summation formulas, the Catalan’s identity, the Cassini’s identity and the d’Ocagne’s identity.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.1.154-170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Different number systems have been studied lately. Recently, many researchers have considered the hybrid numbers which are generalization of the complex, hyperbolic and dual number systems. In this paper, we define the hybrid hyper-Fibonacci and hyper-Lucas numbers. Furthermore, we obtain some algebraic properties of these numbers such as the recurrence relations, the generating functions, the Binet’s formulas, the summation formulas, the Catalan’s identity, the Cassini’s identity and the d’Ocagne’s identity.
混合超斐波那契数和超卢卡斯数
最近研究了不同的数字系统。近年来,许多研究者研究了复数、双曲和对偶数系统的推广——杂合数。在本文中,我们定义了混合的超斐波那契数和超卢卡斯数。进一步得到了这些数的递归关系、生成函数、Binet公式、求和公式、Catalan恒等式、Cassini恒等式和d’ocagne恒等式等代数性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信