Fractional dynamic of two-blocks model for earthquake induced by periodic stress perturbations

Q1 Mathematics
M.T. Motchongom , G.B. Tanekou , Fonzin Fozin , L.Y. Kagho , R. Kengne , F.B. Pelap , T.C. Kofane
{"title":"Fractional dynamic of two-blocks model for earthquake induced by periodic stress perturbations","authors":"M.T. Motchongom ,&nbsp;G.B. Tanekou ,&nbsp;Fonzin Fozin ,&nbsp;L.Y. Kagho ,&nbsp;R. Kengne ,&nbsp;F.B. Pelap ,&nbsp;T.C. Kofane","doi":"10.1016/j.csfx.2021.100064","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the resonance behavior of a spring-block model with fractional-order derivative under periodic stress perturbation is investigated. Using the harmonic balance method, we derive the frequency-response equations for the system consisting of two blocks linked by a linear spring. The results have shown that the fractional-order derivative and perturbation parameter can affect the dynamical properties of fault rock, which is characterized by the equivalent linear damping coefficient and the equivalent linear stiffness coefficient. The frequency-response curve displays the resonance peaks and one anti-resonance. The effects of parameters <span><math><mrow><mi>q</mi><mo>,</mo><mspace></mspace><msub><mi>β</mi><mn>0</mn></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>ε</mi></mrow><mn>0</mn></msub><mo>,</mo><mspace></mspace><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><msub><mrow><mi>ε</mi></mrow><mn>1</mn></msub></math></span> on the resonance and anti-resonance periods and the response amplitudes at the resonance frequency are analyzed. The shear stress response shows that the system accumulates a lot of energy at the resonance frequency. This accumulation can lead to the destabilization of the fault system. The blocks move without accumulating energy at the anti-resonance frequency. This can lead to the stabilization of the fault system.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"7 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2021.100064","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054421000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the resonance behavior of a spring-block model with fractional-order derivative under periodic stress perturbation is investigated. Using the harmonic balance method, we derive the frequency-response equations for the system consisting of two blocks linked by a linear spring. The results have shown that the fractional-order derivative and perturbation parameter can affect the dynamical properties of fault rock, which is characterized by the equivalent linear damping coefficient and the equivalent linear stiffness coefficient. The frequency-response curve displays the resonance peaks and one anti-resonance. The effects of parameters q,β0,ε0,β1 and ε1 on the resonance and anti-resonance periods and the response amplitudes at the resonance frequency are analyzed. The shear stress response shows that the system accumulates a lot of energy at the resonance frequency. This accumulation can lead to the destabilization of the fault system. The blocks move without accumulating energy at the anti-resonance frequency. This can lead to the stabilization of the fault system.

周期性应力扰动诱发地震的双块模型的分数动力
研究了具有分数阶导数的弹簧块模型在周期性应力扰动下的共振特性。利用谐波平衡法,导出了由线性弹簧连接的两个块组成的系统的频率响应方程。结果表明,分数阶导数和摄动参数会影响断层岩的动力特性,其特征是等效线性阻尼系数和等效线性刚度系数。频率响应曲线显示共振峰和一个反共振。分析了参数q、β0、ε0、β1和ε1对共振周期和反共振周期以及共振频率处的响应幅值的影响。剪切应力响应表明系统在共振频率处积累了大量能量。这种积累会导致断层系统的不稳定。在反共振频率下,块体移动时不积累能量。这可以导致故障系统的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信