Algebraic representation of Three Qubit Quantum Circuit Problems

IF 0.5 Q3 MATHEMATICS
Chew K. Y., N. M. Shah, Chan K. T.
{"title":"Algebraic representation of Three Qubit Quantum Circuit Problems","authors":"Chew K. Y., N. M. Shah, Chan K. T.","doi":"10.47836/mjms.16.3.10","DOIUrl":null,"url":null,"abstract":"The evolution of quantum states serves as good fundamental studies in understanding the quantum information systems which finally lead to the research on quantum computation. To carry out such a study, mathematical tools such as the Lie group and their associated Lie algebra is of great importance. In this study, the Lie algebra of su(8) is represented in a tensor product operation between three Pauli matrices. This can be realized by constructing the generalized Gell-Mann matrices and comparing them to the Pauli bases. It is shown that there is a one-to-one correlation of the Gell-Mann matrices with the Pauli basis which resembled the change of coordinates. Together with the commutator relations and the frequency analysis of the structure constant via the algebra, the Lie bracket operation will be highlighted providing insight into relating quantum circuit model with Lie Algebra. These are particularly useful when dealing with three-qubit quantum circuit problems which involve quantum gates that is derived from the SU(8) Lie group.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of quantum states serves as good fundamental studies in understanding the quantum information systems which finally lead to the research on quantum computation. To carry out such a study, mathematical tools such as the Lie group and their associated Lie algebra is of great importance. In this study, the Lie algebra of su(8) is represented in a tensor product operation between three Pauli matrices. This can be realized by constructing the generalized Gell-Mann matrices and comparing them to the Pauli bases. It is shown that there is a one-to-one correlation of the Gell-Mann matrices with the Pauli basis which resembled the change of coordinates. Together with the commutator relations and the frequency analysis of the structure constant via the algebra, the Lie bracket operation will be highlighted providing insight into relating quantum circuit model with Lie Algebra. These are particularly useful when dealing with three-qubit quantum circuit problems which involve quantum gates that is derived from the SU(8) Lie group.
三量子位量子电路问题的代数表示
量子态的演化是理解量子信息系统的良好基础研究,最终导致量子计算的研究。要进行这样的研究,李群及其相关的李代数等数学工具是非常重要的。在本研究中,用三个泡利矩阵之间的张量积运算来表示su(8)的李代数。这可以通过构造广义Gell-Mann矩阵并将其与泡利基进行比较来实现。结果表明,Gell-Mann矩阵与泡利基之间存在着类似于坐标变化的一对一相关关系。与换向子关系和通过代数对结构常数的频率分析一起,李括号运算将被重点强调,从而深入了解与李代数相关的量子电路模型。这在处理涉及SU(8)李群衍生的量子门的三量子比特量子电路问题时特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信