{"title":"A Singular Nonlinear History-Dependent Cohesive Zone Model: Is it Possible?","authors":"I. Argatov","doi":"10.1093/qjmam/hbaa007","DOIUrl":null,"url":null,"abstract":"\n A history-dependent cohesive zone model is considered in the linear elasticity framework with the cohesive stresses governed by the fracture condition formulated in terms of a nonlinear Abel-type integral operator. A possibility for the cohesive stresses to possess a weak singularity has been examined by utilizing asymptotic modeling approach. It has been shown that the balance of the leading-term asymptotic representations in the model equations is possible for nonsingular cohesive stresses only.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"73 1","pages":"201-215"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbaa007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/qjmam/hbaa007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A history-dependent cohesive zone model is considered in the linear elasticity framework with the cohesive stresses governed by the fracture condition formulated in terms of a nonlinear Abel-type integral operator. A possibility for the cohesive stresses to possess a weak singularity has been examined by utilizing asymptotic modeling approach. It has been shown that the balance of the leading-term asymptotic representations in the model equations is possible for nonsingular cohesive stresses only.
期刊介绍:
The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.