A Singular Nonlinear History-Dependent Cohesive Zone Model: Is it Possible?

IF 0.8 4区 工程技术 Q3 MATHEMATICS, APPLIED
I. Argatov
{"title":"A Singular Nonlinear History-Dependent Cohesive Zone Model: Is it Possible?","authors":"I. Argatov","doi":"10.1093/qjmam/hbaa007","DOIUrl":null,"url":null,"abstract":"\n A history-dependent cohesive zone model is considered in the linear elasticity framework with the cohesive stresses governed by the fracture condition formulated in terms of a nonlinear Abel-type integral operator. A possibility for the cohesive stresses to possess a weak singularity has been examined by utilizing asymptotic modeling approach. It has been shown that the balance of the leading-term asymptotic representations in the model equations is possible for nonsingular cohesive stresses only.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"73 1","pages":"201-215"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbaa007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/qjmam/hbaa007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A history-dependent cohesive zone model is considered in the linear elasticity framework with the cohesive stresses governed by the fracture condition formulated in terms of a nonlinear Abel-type integral operator. A possibility for the cohesive stresses to possess a weak singularity has been examined by utilizing asymptotic modeling approach. It has been shown that the balance of the leading-term asymptotic representations in the model equations is possible for nonsingular cohesive stresses only.
一个奇异的非线性历史相关粘性区模型:它可能吗?
在线性弹性框架中考虑了一个依赖于历史的黏结带模型,黏结应力由断裂条件决定,用非线性abel型积分算子表示。利用渐近建模方法研究了黏结应力具有弱奇点的可能性。结果表明,模型方程中前项渐近表示的平衡仅对非奇异内聚应力是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信