Building Greibach Normal Form Grammars Using Genetic Algorithms

Signals Pub Date : 2022-10-12 DOI:10.3390/signals3040042
Nikolaos P. Anastasopoulos, E. Dermatas
{"title":"Building Greibach Normal Form Grammars Using Genetic Algorithms","authors":"Nikolaos P. Anastasopoulos, E. Dermatas","doi":"10.3390/signals3040042","DOIUrl":null,"url":null,"abstract":"Grammatical inference of context-free grammars using positive and negative language examples is among the most challenging task in modern artificial and natural language technology. Recently, several implementations combining various techniques, usually including the Backus–Naur form, have been proposed. In this paper, we explore a new implementation of grammatical inference using evolution methods focused on the Greibach normal form and exploiting its properties, and also propose new solutions both in the evolutionary processes and in the corresponding fitness estimation.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3040042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grammatical inference of context-free grammars using positive and negative language examples is among the most challenging task in modern artificial and natural language technology. Recently, several implementations combining various techniques, usually including the Backus–Naur form, have been proposed. In this paper, we explore a new implementation of grammatical inference using evolution methods focused on the Greibach normal form and exploiting its properties, and also propose new solutions both in the evolutionary processes and in the corresponding fitness estimation.
使用遗传算法构建Greibach范式语法
在现代人工语言和自然语言技术中,使用正反两种语言实例对无上下文语法进行语法推理是最具挑战性的任务之一。最近,已经提出了几种结合各种技术的实现,通常包括Backus-Naur格式。在本文中,我们探索了一种基于Greibach范式及其特性的进化方法来实现语法推理,并在进化过程和相应的适应度估计中提出了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信