R. Naftalovich, Marko Oydanich, Tolga Berkman, Andrew Iskander
{"title":"Quality Fade in Medical Device Manufacturing: Thinness of Airway Breathing Circuit Plastic.","authors":"R. Naftalovich, Marko Oydanich, Tolga Berkman, Andrew Iskander","doi":"10.2345/0890-8205-55.4.118","DOIUrl":null,"url":null,"abstract":"Mechanical respirators typically use a plastic circuit apparatus to pass gases from the ventilator to the patient. Structural integrity of these circuits is crucial for maintaining oxygenation. Anesthesiologists, respiratory therapists, and other critical care professionals rely on the circuit to be free of defects. The American Society for Testing and Materials maintains standards of medical devices and had a standard (titled Standard Specification for Anesthesia Breathing Tubes) that included circuits. This standard, which was last updated in 2008, has since been withdrawn. Lack of a defined standard can invite quality fade-the phenomenon whereby manufacturers deliberately but surreptitiously reduce material quality to widen profit margins. With plastics, this is often in the form of thinner material. A minimum thickness delineated in the breathing circuit standard would help ensure product quality, maintain tolerance to mechanical insults, and avert leaks. Our impression is that over the recent years, the plastic in many of the commercially available breathing circuits has gotten thinner. We experienced a circuit leak in the middle of a laminectomy due to compromised plastic tubing in a location that evaded the safety circuit leak check that is performed prior to surgery. This compromised ventilation and oxygenation in the middle of a surgery in which the patient is positioned prone and hence with a minimally accessible airway; it could have resulted in anoxic brain injury or death. The incident led us to reflect on the degree of thinness of the circuit's plastic.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 4 1","pages":"118-120"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Instrumentation and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2345/0890-8205-55.4.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical respirators typically use a plastic circuit apparatus to pass gases from the ventilator to the patient. Structural integrity of these circuits is crucial for maintaining oxygenation. Anesthesiologists, respiratory therapists, and other critical care professionals rely on the circuit to be free of defects. The American Society for Testing and Materials maintains standards of medical devices and had a standard (titled Standard Specification for Anesthesia Breathing Tubes) that included circuits. This standard, which was last updated in 2008, has since been withdrawn. Lack of a defined standard can invite quality fade-the phenomenon whereby manufacturers deliberately but surreptitiously reduce material quality to widen profit margins. With plastics, this is often in the form of thinner material. A minimum thickness delineated in the breathing circuit standard would help ensure product quality, maintain tolerance to mechanical insults, and avert leaks. Our impression is that over the recent years, the plastic in many of the commercially available breathing circuits has gotten thinner. We experienced a circuit leak in the middle of a laminectomy due to compromised plastic tubing in a location that evaded the safety circuit leak check that is performed prior to surgery. This compromised ventilation and oxygenation in the middle of a surgery in which the patient is positioned prone and hence with a minimally accessible airway; it could have resulted in anoxic brain injury or death. The incident led us to reflect on the degree of thinness of the circuit's plastic.
期刊介绍:
AAMI publishes Biomedical Instrumentation & Technology (BI&T) a bi-monthly peer-reviewed journal dedicated to the developers, managers, and users of medical instrumentation and technology.