C. Knigge, K. Bennett, C. Le Bot, Mara Gehlen-Zeller, S. Koos
{"title":"Harmonization and Verification of Three National European Icing Forecast Models Using Pilot Reports","authors":"C. Knigge, K. Bennett, C. Le Bot, Mara Gehlen-Zeller, S. Koos","doi":"10.1155/2022/7920779","DOIUrl":null,"url":null,"abstract":"The Single European Sky Air Traffic Management Research (SESAR) program aims at modernizing and harmonizing the European airspace, which currently has a strongly fragmented character. Besides turbulence and convection, in-flight icing is part of SESAR and can be seen as one of the most important meteorological phenomena, which may lead to hazardous flight conditions for aircraft. In this study, several methods with varying complexities are analyzed for combining three individual in-flight icing forecasts based on numerical weather prediction models from Deutscher Wetterdienst, Météo-France, and Met Office. The optimal method will then be used to operate one single harmonized in-flight icing forecast over Europe. As verification data, pilot reports (PIREPs) are used, which provide information about hazardous weather and are currently the only direct regular measure of in-flight icing events available. In order to assess the individual icing forecasts and the resulting combinations, the probability of detection skill score is calculated based on multicategory contingency tables for the forecast icing intensities. The scores are merged into a single skill score to give an overview of the quality of the icing forecast and enable comparison of the different model combination approaches. The concluding results show that the most complex combination approach, which uses iteratively optimized weighting factors for each model, provides the best forecast quality according to the PIREPs. The combination of the three icing forecasts results in a harmonized icing forecast that exceeds the skill of each individual icing forecast, thus providing an improvement to in-flight icing forecasts over Europe.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/7920779","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Single European Sky Air Traffic Management Research (SESAR) program aims at modernizing and harmonizing the European airspace, which currently has a strongly fragmented character. Besides turbulence and convection, in-flight icing is part of SESAR and can be seen as one of the most important meteorological phenomena, which may lead to hazardous flight conditions for aircraft. In this study, several methods with varying complexities are analyzed for combining three individual in-flight icing forecasts based on numerical weather prediction models from Deutscher Wetterdienst, Météo-France, and Met Office. The optimal method will then be used to operate one single harmonized in-flight icing forecast over Europe. As verification data, pilot reports (PIREPs) are used, which provide information about hazardous weather and are currently the only direct regular measure of in-flight icing events available. In order to assess the individual icing forecasts and the resulting combinations, the probability of detection skill score is calculated based on multicategory contingency tables for the forecast icing intensities. The scores are merged into a single skill score to give an overview of the quality of the icing forecast and enable comparison of the different model combination approaches. The concluding results show that the most complex combination approach, which uses iteratively optimized weighting factors for each model, provides the best forecast quality according to the PIREPs. The combination of the three icing forecasts results in a harmonized icing forecast that exceeds the skill of each individual icing forecast, thus providing an improvement to in-flight icing forecasts over Europe.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.