{"title":"Supporting Mechanistic Reasoning in Domain-Specific Contexts","authors":"P. Weinberg","doi":"10.7771/2157-9288.1127","DOIUrl":null,"url":null,"abstract":"Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides domain-specific illustrations of mechanistic reasoning. The data in this study comes from the Assessment of Mechanistic Reasoning Project (AMRP) (Weinberg, 2012), designed using item response theory modeling to diagnose individuals’ mechanistic reasoning about systems of levers. Such a characterization of mechanistic reasoning illuminates what is easy and difficult about this form of reasoning, within the subdomain of simple machines. Moreover, this work indicates how domain-general principles may be limited. The study participants included elementary, middle, and high school students as well as college undergraduates and adults without higher education. Although the majority of participants responded to the AMRP by diagnosing at least one mechanistic element (elements inherent to the working of systems of levers) as they predicted its motion, such reasoning was not trivial. In fact, the diverse reasoning by participants shows how systems of levers support elements of mechanistic reasoning. Moreover, this study provides evidence that the development of mechanistic reasoning is dependent on domain-specific experience.","PeriodicalId":37951,"journal":{"name":"Journal of Pre-College Engineering Education Research","volume":"7 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pre-College Engineering Education Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7771/2157-9288.1127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 5
Abstract
Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides domain-specific illustrations of mechanistic reasoning. The data in this study comes from the Assessment of Mechanistic Reasoning Project (AMRP) (Weinberg, 2012), designed using item response theory modeling to diagnose individuals’ mechanistic reasoning about systems of levers. Such a characterization of mechanistic reasoning illuminates what is easy and difficult about this form of reasoning, within the subdomain of simple machines. Moreover, this work indicates how domain-general principles may be limited. The study participants included elementary, middle, and high school students as well as college undergraduates and adults without higher education. Although the majority of participants responded to the AMRP by diagnosing at least one mechanistic element (elements inherent to the working of systems of levers) as they predicted its motion, such reasoning was not trivial. In fact, the diverse reasoning by participants shows how systems of levers support elements of mechanistic reasoning. Moreover, this study provides evidence that the development of mechanistic reasoning is dependent on domain-specific experience.
期刊介绍:
The Journal of Pre-College Engineering Education Research (J-PEER) is issued electronically twice a year and serves as a forum and community space for the publication of research and evaluation reports on areas of pre-college STEM education, particularly in engineering. J-PEER targets scholars and practitioners in the new and expanding field of pre-college engineering education. This journal invites authors to submit their original and unpublished work in the form of (1) research papers or (2) shorter practitioner reports in numerous areas of STEM education, with a special emphasis on cross-disciplinary approaches incorporating engineering. J-PEER publishes a wide range of topics, including but not limited to: research articles on elementary and secondary students’ learning; curricular and extracurricular approaches to teaching engineering in elementary and secondary school; professional development of teachers and other school professionals; comparative approaches to curriculum and professional development in engineering education; parents’ attitudes toward engineering; and the learning of engineering in informal settings.