{"title":"Inverse-closedness of the subalgebra of locally nuclear operators","authors":"E. Yu. Guseva, V. G. Kurbatov","doi":"10.1007/s10476-023-0194-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a Banach space and <i>T</i> be a bounded linear operator acting in <i>l</i><sub><i>p</i></sub>(ℤ<sup><i>c</i></sup>,<i>X</i>), 1 ≤ <i>p</i> ≤ ∞. The operator <i>T</i> is called <i>locally nuclear</i> if it can be represented in the form </p><div><div><span>$${(Tx)_k} = \\sum\\limits_{m \\in {\\mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},\\quad k \\in {\\mathbb{Z}^c},$$</span></div></div><p> where <i>b</i><sub><i>km</i></sub>: <i>X</i> → <i>X</i> are nuclear, </p><div><div><span>$${\\left\\| {{b_{km}}} \\right\\|_{{\\mathfrak{S}_1}}} \\le {\\beta _m},\\quad k,m \\in {\\mathbb{Z}^c},$$</span></div></div><p><span>\\(\\left\\|\\cdot\\right\\|{_{{\\mathfrak{S}_1}}}\\)</span> is the nuclear norm, <i>β</i> ∈ <i>l</i><sub>1</sub>(ℤ<sup><i>c</i></sup>,ℂ) or <i>β</i> ∈ <i>l</i><sub>1,<i>g</i></sub>(ℤ<sup><i>c</i></sup>,ℂ), and <i>g</i> is an appropriate weight on ℤ<sup><i>c</i></sup>. It is established that if <i>T</i> is locally nuclear and the operator 1 + <i>T</i> is invertible, then the inverse operator (1 + <i>T</i>)<sup>−1</sup> has the form 1 + <i>T</i><sub>1</sub>, where <i>T</i><sub>1</sub> is also locally nuclear. This result is refined for the case of operators acting in <i>L</i><sub><i>p</i></sub> (ℝ<sup><i>c</i></sup>,ℂ).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0194-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0194-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be a Banach space and T be a bounded linear operator acting in lp(ℤc,X), 1 ≤ p ≤ ∞. The operator T is called locally nuclear if it can be represented in the form
\(\left\|\cdot\right\|{_{{\mathfrak{S}_1}}}\) is the nuclear norm, β ∈ l1(ℤc,ℂ) or β ∈ l1,g(ℤc,ℂ), and g is an appropriate weight on ℤc. It is established that if T is locally nuclear and the operator 1 + T is invertible, then the inverse operator (1 + T)−1 has the form 1 + T1, where T1 is also locally nuclear. This result is refined for the case of operators acting in Lp (ℝc,ℂ).