Inverse-closedness of the subalgebra of locally nuclear operators

IF 0.6 3区 数学 Q3 MATHEMATICS
E. Yu. Guseva, V. G. Kurbatov
{"title":"Inverse-closedness of the subalgebra of locally nuclear operators","authors":"E. Yu. Guseva,&nbsp;V. G. Kurbatov","doi":"10.1007/s10476-023-0194-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a Banach space and <i>T</i> be a bounded linear operator acting in <i>l</i><sub><i>p</i></sub>(ℤ<sup><i>c</i></sup>,<i>X</i>), 1 ≤ <i>p</i> ≤ ∞. The operator <i>T</i> is called <i>locally nuclear</i> if it can be represented in the form </p><div><div><span>$${(Tx)_k} = \\sum\\limits_{m \\in {\\mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},\\quad k \\in {\\mathbb{Z}^c},$$</span></div></div><p> where <i>b</i><sub><i>km</i></sub>: <i>X</i> → <i>X</i> are nuclear, </p><div><div><span>$${\\left\\| {{b_{km}}} \\right\\|_{{\\mathfrak{S}_1}}} \\le {\\beta _m},\\quad k,m \\in {\\mathbb{Z}^c},$$</span></div></div><p><span>\\(\\left\\|\\cdot\\right\\|{_{{\\mathfrak{S}_1}}}\\)</span> is the nuclear norm, <i>β</i> ∈ <i>l</i><sub>1</sub>(ℤ<sup><i>c</i></sup>,ℂ) or <i>β</i> ∈ <i>l</i><sub>1,<i>g</i></sub>(ℤ<sup><i>c</i></sup>,ℂ), and <i>g</i> is an appropriate weight on ℤ<sup><i>c</i></sup>. It is established that if <i>T</i> is locally nuclear and the operator 1 + <i>T</i> is invertible, then the inverse operator (1 + <i>T</i>)<sup>−1</sup> has the form 1 + <i>T</i><sub>1</sub>, where <i>T</i><sub>1</sub> is also locally nuclear. This result is refined for the case of operators acting in <i>L</i><sub><i>p</i></sub> (ℝ<sup><i>c</i></sup>,ℂ).</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 2","pages":"467 - 491"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0194-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0194-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a Banach space and T be a bounded linear operator acting in lp(ℤc,X), 1 ≤ p ≤ ∞. The operator T is called locally nuclear if it can be represented in the form

$${(Tx)_k} = \sum\limits_{m \in {\mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},\quad k \in {\mathbb{Z}^c},$$

where bkm: XX are nuclear,

$${\left\| {{b_{km}}} \right\|_{{\mathfrak{S}_1}}} \le {\beta _m},\quad k,m \in {\mathbb{Z}^c},$$

\(\left\|\cdot\right\|{_{{\mathfrak{S}_1}}}\) is the nuclear norm, βl1(ℤc,ℂ) or βl1,g(ℤc,ℂ), and g is an appropriate weight on ℤc. It is established that if T is locally nuclear and the operator 1 + T is invertible, then the inverse operator (1 + T)−1 has the form 1 + T1, where T1 is also locally nuclear. This result is refined for the case of operators acting in Lp (ℝc,ℂ).

局部核算子子代数的逆闭性
设X是Banach空间,T是作用于lp的有界线性算子(ℤc、 X),1≤p≤∞。如果算子T可以表示为$${(Tx)_k}=\sum\limits_{m\in{\mathbb{Z}^c}}{b_{km}}{x_{k-m}}},\quad k\in{\mathbb{Z}^ c},$$其中bkm:x→ X是核能,$${S}_1}}}{\beta_m},quad k,m\in{\mathbb{Z}^c},$$\(\left{S}_1}}}\)是核范数,β∈l1(ℤcℂ) 或β∈l1,g(ℤcℂ), g是ℤc.建立了如果T是局部核的,并且算子1+T是可逆的,那么逆算子(1+T)−1的形式为1+T1,其中T1也是局部核的。此结果是针对运算符在Lp中操作的情况而改进的(ℝcℂ).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信