Federated Learning and Privacy

Q3 Computer Science
Queue Pub Date : 2021-10-31 DOI:10.1145/3494834.3500240
Kallista A. Bonawitz, P. Kairouz, H. B. McMahan, Daniel Ramage
{"title":"Federated Learning and Privacy","authors":"Kallista A. Bonawitz, P. Kairouz, H. B. McMahan, Daniel Ramage","doi":"10.1145/3494834.3500240","DOIUrl":null,"url":null,"abstract":"Centralized data collection can expose individuals to privacy risks and organizations to legal risks if data is not properly managed. Federated learning is a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. This article provides a brief introduction to key concepts in federated learning and analytics with an emphasis on how privacy technologies may be combined in real-world systems and how their use charts a path toward societal benefit from aggregate statistics in new domains and with minimized risk to individuals and to the organizations who are custodians of the data.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"19 1","pages":"87 - 114"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3494834.3500240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 33

Abstract

Centralized data collection can expose individuals to privacy risks and organizations to legal risks if data is not properly managed. Federated learning is a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. This article provides a brief introduction to key concepts in federated learning and analytics with an emphasis on how privacy technologies may be combined in real-world systems and how their use charts a path toward societal benefit from aggregate statistics in new domains and with minimized risk to individuals and to the organizations who are custodians of the data.
联合学习与隐私
如果数据管理不当,集中的数据收集可能会使个人面临隐私风险,使组织面临法律风险。联邦学习是一种机器学习设置,其中多个实体在中央服务器或服务提供商的协调下协作解决机器学习问题。每个客户端的原始数据存储在本地,不交换或传输;相反,用于即时聚合的集中更新用于实现学习目标。本文简要介绍了联邦学习和分析中的关键概念,重点介绍了如何将隐私技术结合到现实世界的系统中,以及它们的使用如何从新领域的汇总统计数据中获得社会效益,并将个人和数据托管机构的风险降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Queue
Queue Computer Science-Computer Science (all)
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信