Liang Wang, Shuo‐Jye Wu, S. Dey, Y. Tripathi, Song Mao
{"title":"Estimation of stress-strength reliability for multicomponent system with a generalized inverted exponential distribution","authors":"Liang Wang, Shuo‐Jye Wu, S. Dey, Y. Tripathi, Song Mao","doi":"10.1080/15326349.2022.2162545","DOIUrl":null,"url":null,"abstract":"Abstract Reliability analysis for a multicomponent stress-strength (MSS) model is discussed in this paper. When strength and stress variables follow generalized inverted exponential distributions (GIEDs) with common scale parameters, maximum likelihood estimate of MSS reliability is established along with associated existence and uniqueness, and approximate confidence interval is also obtained in consequence. Additionally, alternative generalized estimates are proposed for MSS reliability based on constructed pivotal quantities, and associated Monte-Carlo sampling is provided for computation. Further, classical and generalized estimates are also established under unequal strength and stress parameter case. For comparison, bootstrap confidence intervals are also provided under different cases. To compare the equivalence of the strength and stress parameters, likelihood ratio testing is presented as a complement. Finally, extensive simulation studies are carried out to assess the performance of the proposed methods, and a real data example is presented for application. The numerical results indicate that the proposed generalized methods perform better than conventional likelihood results.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2162545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Reliability analysis for a multicomponent stress-strength (MSS) model is discussed in this paper. When strength and stress variables follow generalized inverted exponential distributions (GIEDs) with common scale parameters, maximum likelihood estimate of MSS reliability is established along with associated existence and uniqueness, and approximate confidence interval is also obtained in consequence. Additionally, alternative generalized estimates are proposed for MSS reliability based on constructed pivotal quantities, and associated Monte-Carlo sampling is provided for computation. Further, classical and generalized estimates are also established under unequal strength and stress parameter case. For comparison, bootstrap confidence intervals are also provided under different cases. To compare the equivalence of the strength and stress parameters, likelihood ratio testing is presented as a complement. Finally, extensive simulation studies are carried out to assess the performance of the proposed methods, and a real data example is presented for application. The numerical results indicate that the proposed generalized methods perform better than conventional likelihood results.
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.