Some Aspects of Rectifying Curves on Regular Surfaces Under Different Transformations

IF 0.7 Q2 MATHEMATICS
Sandeep Sharma, Kuljeet Singh
{"title":"Some Aspects of Rectifying Curves on Regular Surfaces Under Different Transformations","authors":"Sandeep Sharma, Kuljeet Singh","doi":"10.28924/2291-8639-21-2023-78","DOIUrl":null,"url":null,"abstract":"An essential space curve in the study of differential geometry is the rectifying curve. In this paper, we studied the adequate requirement for a rectifying curve under the isometry of the surfaces. The normal components of the rectifying curves are also studied, and it is investigated that for rectifying curves, the Christoffel symbols and the normal components along the surface normal are invariant under the isometric transformation. Moreover, we also studied some properties for the first fundamental form of the surfaces.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An essential space curve in the study of differential geometry is the rectifying curve. In this paper, we studied the adequate requirement for a rectifying curve under the isometry of the surfaces. The normal components of the rectifying curves are also studied, and it is investigated that for rectifying curves, the Christoffel symbols and the normal components along the surface normal are invariant under the isometric transformation. Moreover, we also studied some properties for the first fundamental form of the surfaces.
不同变换条件下正则曲面上曲线校正的若干问题
在微分几何研究中,一个重要的空间曲线是校正曲线。本文研究了曲面等距条件下对整直曲线的充分要求。研究了校正曲线的法向分量,研究了校正曲线的克里斯托费尔符号和沿曲面法线的法向分量在等距变换下是不变的。此外,我们还研究了曲面的第一种基本形式的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信