Mohammad Javad Zoleykani, H. Abbasianjahromi, S. Banihashemi, Seyed Amir Tabadkani, Aso Hajirasouli
{"title":"Extended reality (XR) technologies in the construction safety: systematic review and analysis","authors":"Mohammad Javad Zoleykani, H. Abbasianjahromi, S. Banihashemi, Seyed Amir Tabadkani, Aso Hajirasouli","doi":"10.1108/ci-05-2022-0131","DOIUrl":null,"url":null,"abstract":"\nPurpose\nExtended reality (XR) is an emerging technology, with its popularity rising in different industry sectors, where its application has been recently considered in construction safety. This study aims to investigate the applications of XR technologies in the safety of construction through projects lifecycle perspective.\n\n\nDesign/methodology/approach\nScientometric analysis was conducted to discover trends, keywords, contribution of countries and publication outlets in the literature. The content analysis was applied to categorize previous studies into three groups concerning the phase of lifecycle in which they used XR.\n\n\nFindings\nResults of the content analysis showed that the application of XR in the construction safety is mostly covered in two areas, namely, safety training and risk management. It was found that virtual reality was the most used XR tool with most of its application dedicated to safety training in the design phase. The amount of research on the application of augmented reality and mixed reality in safety training, and risk management in all phases of lifecycle is still insignificant. Finally, this study proposed three main areas for using the XR technologies regarding the safety issues in future research, namely, control of safety regulations and safety coordination in construction phase, and safety reports in the operation phase.\n\n\nOriginality/value\nThis paper inspected the utilization of all types of XR for safety in each phase of construction lifecycle and proposed future directions for research by addressing the safety challenges in each phase.\n","PeriodicalId":45580,"journal":{"name":"Construction Innovation-England","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Innovation-England","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ci-05-2022-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
Extended reality (XR) is an emerging technology, with its popularity rising in different industry sectors, where its application has been recently considered in construction safety. This study aims to investigate the applications of XR technologies in the safety of construction through projects lifecycle perspective.
Design/methodology/approach
Scientometric analysis was conducted to discover trends, keywords, contribution of countries and publication outlets in the literature. The content analysis was applied to categorize previous studies into three groups concerning the phase of lifecycle in which they used XR.
Findings
Results of the content analysis showed that the application of XR in the construction safety is mostly covered in two areas, namely, safety training and risk management. It was found that virtual reality was the most used XR tool with most of its application dedicated to safety training in the design phase. The amount of research on the application of augmented reality and mixed reality in safety training, and risk management in all phases of lifecycle is still insignificant. Finally, this study proposed three main areas for using the XR technologies regarding the safety issues in future research, namely, control of safety regulations and safety coordination in construction phase, and safety reports in the operation phase.
Originality/value
This paper inspected the utilization of all types of XR for safety in each phase of construction lifecycle and proposed future directions for research by addressing the safety challenges in each phase.