Qualitative properties of solutions to a mass-conserving free boundary problem modeling cell polarization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anna Logioti, B. Niethammer, Matthias Röger, J. Velázquez
{"title":"Qualitative properties of solutions to a mass-conserving free boundary problem modeling cell polarization","authors":"Anna Logioti, B. Niethammer, Matthias Röger, J. Velázquez","doi":"10.1080/03605302.2023.2247467","DOIUrl":null,"url":null,"abstract":"Abstract We consider a parabolic non-local free boundary problem that has been derived as a limit of a bulk-surface reaction-diffusion system which models cell polarization. We have justified the well-posedness of this problem and have further proved uniqueness of solutions and global stability of steady states. In this paper we investigate qualitative properties of the free boundary. We present necessary and sufficient conditions for the initial data that imply continuity of the support at t = 0. If one of these assumptions fail, then jumps of the support take place. In addition we provide a complete characterization of the jumps for a large class of initial data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2247467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider a parabolic non-local free boundary problem that has been derived as a limit of a bulk-surface reaction-diffusion system which models cell polarization. We have justified the well-posedness of this problem and have further proved uniqueness of solutions and global stability of steady states. In this paper we investigate qualitative properties of the free boundary. We present necessary and sufficient conditions for the initial data that imply continuity of the support at t = 0. If one of these assumptions fail, then jumps of the support take place. In addition we provide a complete characterization of the jumps for a large class of initial data.
细胞极化的守恒质量自由边界问题解的定性性质
摘要考虑一个抛物型非局部自由边界问题,该问题已被导出为模拟细胞极化的体-表面反应-扩散系统的极限。我们证明了这个问题的适定性,并进一步证明了解的唯一性和稳态的全局稳定性。本文研究了自由边界的定性性质。给出了初始数据在t = 0时支持连续性的充分必要条件。如果这些假设中的一个不成立,那么就会发生支撑的跳跃。此外,我们还提供了一大类初始数据的跳跃的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信