H. Brezis, A. Seeger, Jean Van Schaftingen, Po-Lam Yung
{"title":"Sobolev spaces revisited","authors":"H. Brezis, A. Seeger, Jean Van Schaftingen, Po-Lam Yung","doi":"10.4171/RLM/976","DOIUrl":null,"url":null,"abstract":". We describe a recent, one-parameter family of characterizations of Sobolev and BV functions on R n , using sizes of superlevel sets of suitable difference quotients. This provides an alternative point of view to the BBM formula by Bourgain, Brezis and Mironescu, and complements in the case of BV some results of Cohen, Dahmen, Daubechies and DeVore about the sizes of wavelet coefficients of such functions. An application towards Gagliardo-Nirenberg interpolation inequalities is then given. We also establish a related one-parameter family of formulae for the L p norm of functions in L p ( R n ) .","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RLM/976","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
. We describe a recent, one-parameter family of characterizations of Sobolev and BV functions on R n , using sizes of superlevel sets of suitable difference quotients. This provides an alternative point of view to the BBM formula by Bourgain, Brezis and Mironescu, and complements in the case of BV some results of Cohen, Dahmen, Daubechies and DeVore about the sizes of wavelet coefficients of such functions. An application towards Gagliardo-Nirenberg interpolation inequalities is then given. We also establish a related one-parameter family of formulae for the L p norm of functions in L p ( R n ) .
期刊介绍:
The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.