{"title":"A Third Order Accurate in Time, BDF-Type Energy Stable Scheme for the Cahn-Hilliard Equation","authors":"Kelong Cheng, Cheng Wang, S. Null, Yanmei Wu","doi":"10.4208/nmtma.oa-2021-0165","DOIUrl":null,"url":null,"abstract":". In this paper we propose and analyze a backward differentiation formula (BDF) type numerical scheme for the Cahn-Hilliard equation with third order temporal accuracy. The Fourier pseudo-spectral method is used to discretize space. The surface diffusion and the nonlinear chemical potential terms are treated implicitly, while the expansive term is approximated by a third order explicit extrapolation formula for the sake of solvability. In addition, a third order accurate Douglas-Dupont regularization term, in the form of − A 0 ∆ t 2 ∆ N ( φ n +1 − φ n ) , is added in the numerical scheme. In particular, the energy stability is carefully derived in a modified version, so that a uniform bound for the original energy functional is available, and a theoretical justification of the coefficient A becomes available. As a result of this energy stability analysis, a uniform-in-time L 6 N bound of the numerical solution is obtained. And also, the optimal rate convergence analysis and error estimate are provided, in the L ∞ ∆ t (0 , T ; L 2 N ) ∩ L 2∆ t (0 , T ; H 2 h ) norm, with the help of the L 6 N bound for the numerical solution. A few numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2021-0165","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
. In this paper we propose and analyze a backward differentiation formula (BDF) type numerical scheme for the Cahn-Hilliard equation with third order temporal accuracy. The Fourier pseudo-spectral method is used to discretize space. The surface diffusion and the nonlinear chemical potential terms are treated implicitly, while the expansive term is approximated by a third order explicit extrapolation formula for the sake of solvability. In addition, a third order accurate Douglas-Dupont regularization term, in the form of − A 0 ∆ t 2 ∆ N ( φ n +1 − φ n ) , is added in the numerical scheme. In particular, the energy stability is carefully derived in a modified version, so that a uniform bound for the original energy functional is available, and a theoretical justification of the coefficient A becomes available. As a result of this energy stability analysis, a uniform-in-time L 6 N bound of the numerical solution is obtained. And also, the optimal rate convergence analysis and error estimate are provided, in the L ∞ ∆ t (0 , T ; L 2 N ) ∩ L 2∆ t (0 , T ; H 2 h ) norm, with the help of the L 6 N bound for the numerical solution. A few numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence.
期刊介绍:
Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.