Ballistic Characteristics of High-Speed Projectiles Entering Water Vertically

IF 1.3 4区 工程技术 Q4 MECHANICS
B. Hao, Y. G. Lu, H. Dai
{"title":"Ballistic Characteristics of High-Speed Projectiles Entering Water Vertically","authors":"B. Hao, Y. G. Lu, H. Dai","doi":"10.47176/jafm.16.10.1919","DOIUrl":null,"url":null,"abstract":"The formation of supercavitation after a high-speed projectile enters water has a decisive impact on the underwater ballistic and penetration of the projectile. In this study, Ansysfluent19.0 simulation software is used to study water entry of a chosen projectile at velocities of 300, 400, 500, and 600 m/s. The underwater cavitation characteristics, trajectories, and flow-field characteristics are analyzed for a 5.8-mm caliber conical flat head projectile, as well as for t wo other projectiles of the same caliber and different head shapes — conical cone head and elliptical flat head — entering water vertically at the same velocities. The attenuation rate of water entry velocity increases with the increase of velocity. Within first 3ms, the velocity attenuation rate of the conical flat-head projectile with a water entry velocity of 600m / s is 55.6 %, while the velocity attenuation rate of the projectile with a water entry velocity of 300m / s is only 16.3 % within 3ms. Among the head shapes considered, the conical flat head projectile is the most stable for vertical water entry. The stability of an elliptical flat head projectile is worse, and the trajectory stability of a conical cone head projectile is still worse","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.10.1919","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of supercavitation after a high-speed projectile enters water has a decisive impact on the underwater ballistic and penetration of the projectile. In this study, Ansysfluent19.0 simulation software is used to study water entry of a chosen projectile at velocities of 300, 400, 500, and 600 m/s. The underwater cavitation characteristics, trajectories, and flow-field characteristics are analyzed for a 5.8-mm caliber conical flat head projectile, as well as for t wo other projectiles of the same caliber and different head shapes — conical cone head and elliptical flat head — entering water vertically at the same velocities. The attenuation rate of water entry velocity increases with the increase of velocity. Within first 3ms, the velocity attenuation rate of the conical flat-head projectile with a water entry velocity of 600m / s is 55.6 %, while the velocity attenuation rate of the projectile with a water entry velocity of 300m / s is only 16.3 % within 3ms. Among the head shapes considered, the conical flat head projectile is the most stable for vertical water entry. The stability of an elliptical flat head projectile is worse, and the trajectory stability of a conical cone head projectile is still worse
垂直入水高速弹的弹道特性
高速弹丸入水后超空泡的形成对弹丸的水下弹道和侵彻有着决定性的影响。在本研究中,Ansys fluent19.0模拟软件用于研究所选炮弹在300、400、500和600 m/s速度下的进水情况。分析了一枚5.8毫米口径圆锥平头弹丸以及两枚相同口径、不同头部形状的圆锥头和椭圆平头弹丸以相同速度垂直入水时的水下空化特性、轨迹和流场特性。进水速度的衰减率随进水速度的增加而增大。在前3ms内,进水速度为600m/s的锥形平头弹丸的速度衰减率为55.6%,而进水速度为300m/s的圆锥平头弹丸在3ms内的速度衰减速率仅为16.3%。在所考虑的头部形状中,锥形平头弹丸对于垂直进水是最稳定的。椭圆扁头弹的稳定性较差,圆锥头弹的弹道稳定性较差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信