Wenyang Shi, Xiankun Liu, Min Gao, Lei Tao, Jiajia Bai, Qingjie Zhu
{"title":"Pressuredrop response characteristics for multi-injection well interfered vertical well in heterogeneous fractured anticline reservoirs","authors":"Wenyang Shi, Xiankun Liu, Min Gao, Lei Tao, Jiajia Bai, Qingjie Zhu","doi":"10.1115/1.4062081","DOIUrl":null,"url":null,"abstract":"\n Fractured anticline reservoirs are mostly developed by a line production well located at the top position and a line injecting well located at the bottom position. The production well is often interference with by multiple injecting wells, but there is little related research about multiple injecting well interference. To solve this problem, an extended bottom-hole pressuredrop (BHPD) response model for production well interfered with by multiple injection wells was presented to capture the injection interference and gravity effect. The proposed model's correctness is validated by the software numerical simulation, and low regimes were identified by the BHPD and its derivative curve. Research results show that: (i) The BHPD derivative curve has a 1/2 slope line, V-shape, and 1 slope line in reservoir linear flow regime, inter-porosity flow regime, and interference flow regime, respectively. (ii) The drop rate of pressure increases with the increase of formation transmissibility and storability. The bigger the fracture storability, the more obvious the V-shape feature in the derivative curve of BHPD. As the inter-porosity flow coefficient increases, the V-shape feature emerges later. (iii) The beginning time of the interference flow becomes later when the interference distance increases. When the injection rate trends to the production rate, the BHPD curve shows a slight drop and its derivative curve has an intermittent rupture. (iv) The influence of the gravity effect is not ignored. Due to the gravity effect, the BHPD interfered by constant injection well like the BHPD's behavior interfered by the closed boundary. This work provides technical support for capturing the source and degree of interference from well group in the heterogeneous fractured anticline reservoir.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Fractured anticline reservoirs are mostly developed by a line production well located at the top position and a line injecting well located at the bottom position. The production well is often interference with by multiple injecting wells, but there is little related research about multiple injecting well interference. To solve this problem, an extended bottom-hole pressuredrop (BHPD) response model for production well interfered with by multiple injection wells was presented to capture the injection interference and gravity effect. The proposed model's correctness is validated by the software numerical simulation, and low regimes were identified by the BHPD and its derivative curve. Research results show that: (i) The BHPD derivative curve has a 1/2 slope line, V-shape, and 1 slope line in reservoir linear flow regime, inter-porosity flow regime, and interference flow regime, respectively. (ii) The drop rate of pressure increases with the increase of formation transmissibility and storability. The bigger the fracture storability, the more obvious the V-shape feature in the derivative curve of BHPD. As the inter-porosity flow coefficient increases, the V-shape feature emerges later. (iii) The beginning time of the interference flow becomes later when the interference distance increases. When the injection rate trends to the production rate, the BHPD curve shows a slight drop and its derivative curve has an intermittent rupture. (iv) The influence of the gravity effect is not ignored. Due to the gravity effect, the BHPD interfered by constant injection well like the BHPD's behavior interfered by the closed boundary. This work provides technical support for capturing the source and degree of interference from well group in the heterogeneous fractured anticline reservoir.
期刊介绍:
Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation