BeeToxAI: An artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees

José T. Moreira-Filho , Rodolpho C. Braga , Jade Milhomem Lemos , Vinicius M. Alves , Joyce V.V.B. Borba , Wesley S. Costa , Nicole Kleinstreuer , Eugene N. Muratov , Carolina Horta Andrade , Bruno J. Neves
{"title":"BeeToxAI: An artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees","authors":"José T. Moreira-Filho ,&nbsp;Rodolpho C. Braga ,&nbsp;Jade Milhomem Lemos ,&nbsp;Vinicius M. Alves ,&nbsp;Joyce V.V.B. Borba ,&nbsp;Wesley S. Costa ,&nbsp;Nicole Kleinstreuer ,&nbsp;Eugene N. Muratov ,&nbsp;Carolina Horta Andrade ,&nbsp;Bruno J. Neves","doi":"10.1016/j.ailsci.2021.100013","DOIUrl":null,"url":null,"abstract":"<div><p>Chemically induced toxicity is the leading cause of recent extinction of honey bees. In this regard, we developed an innovative artificial intelligence-based web app (BeeToxAI) for assessing the acute toxicity of chemicals to <em>Apis mellifera</em>. Initially, we developed and externally validated QSAR models for classification (external set accuracy ∼91%) through the combination of Random Forest and molecular fingerprints to predict the potential for chemicals to cause acute contact toxicity and acute oral toxicity to honey bees. Then, we developed and externally validated regression QSAR models (<span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> = 0.75) using Feedforward Neural Networks (FNNs). Afterward, the best models were implemented in the publicly available BeeToxAI web app (<span>http://beetoxai.labmol.com.br/</span><svg><path></path></svg><u>)</u>. The outputs of BeeToxAI are: toxicity predictions with estimated confidence, applicability domain estimation, and color-coded maps of relative structure fragment contributions to toxicity. As an additional assessment of BeeToxAI performance, we collected an external set of pesticides with known bee toxicity that were not included in our modeling dataset. BeeToxAI classification models were able to predict four out of five pesticides correctly. The acute contact toxicity model correctly predicted all of the eight pesticides. Here we demonstrate that BeeToxAI can be used as a rapid new approach methodology for predicting acute toxicity of chemicals in honey bees.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000131/pdfft?md5=f4b6e96a7da27f813679c0aab8f1014d&pid=1-s2.0-S2667318521000131-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318521000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Chemically induced toxicity is the leading cause of recent extinction of honey bees. In this regard, we developed an innovative artificial intelligence-based web app (BeeToxAI) for assessing the acute toxicity of chemicals to Apis mellifera. Initially, we developed and externally validated QSAR models for classification (external set accuracy ∼91%) through the combination of Random Forest and molecular fingerprints to predict the potential for chemicals to cause acute contact toxicity and acute oral toxicity to honey bees. Then, we developed and externally validated regression QSAR models (R2 = 0.75) using Feedforward Neural Networks (FNNs). Afterward, the best models were implemented in the publicly available BeeToxAI web app (http://beetoxai.labmol.com.br/). The outputs of BeeToxAI are: toxicity predictions with estimated confidence, applicability domain estimation, and color-coded maps of relative structure fragment contributions to toxicity. As an additional assessment of BeeToxAI performance, we collected an external set of pesticides with known bee toxicity that were not included in our modeling dataset. BeeToxAI classification models were able to predict four out of five pesticides correctly. The acute contact toxicity model correctly predicted all of the eight pesticides. Here we demonstrate that BeeToxAI can be used as a rapid new approach methodology for predicting acute toxicity of chemicals in honey bees.

Abstract Image

BeeToxAI:一款基于人工智能的网络应用程序,用于评估化学品对蜜蜂的急性毒性
化学诱导的毒性是最近蜜蜂灭绝的主要原因。在这方面,我们开发了一个创新的基于人工智能的web应用程序(BeeToxAI),用于评估化学品对蜜蜂的急性毒性。最初,我们通过随机森林和分子指纹相结合,开发并外部验证了用于分类的QSAR模型(外部集精度约91%),以预测化学物质对蜜蜂造成急性接触毒性和急性口服毒性的可能性。然后,我们利用前馈神经网络(fnn)建立并外部验证了回归QSAR模型(R2 = 0.75)。之后,最好的模型在公开可用的BeeToxAI web应用程序(http://beetoxai.labmol.com.br/)中实现。BeeToxAI的输出是:估计置信度的毒性预测,适用性域估计,以及相对结构片段对毒性贡献的彩色编码图。作为对BeeToxAI性能的额外评估,我们收集了一组已知具有蜜蜂毒性的外部杀虫剂,这些杀虫剂未包括在我们的建模数据集中。BeeToxAI分类模型能够正确预测五种农药中的四种。急性接触毒性模型正确预测了所有8种农药。在这里,我们证明BeeToxAI可以作为一种快速的新方法来预测化学物质对蜜蜂的急性毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信