Symmetry and control in thermodynamics

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
E. Adlam, L. Uribarri, N. Allen
{"title":"Symmetry and control in thermodynamics","authors":"E. Adlam, L. Uribarri, N. Allen","doi":"10.1116/5.0065442","DOIUrl":null,"url":null,"abstract":"We explore the relationship between symmetry and entropy, distinguishing between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor. Symmetry, the concept from which Noether derived the conservation laws of physics, is one of the most important guiding principles of modern physics. Moreover, symmetry is often regarded as a form of order, and entropy is sometimes regarded as a measure of disorder, so it is natural to suppose that symmetry and entropy are related in some way. In this article, we will explore the relationship between symmetry and entropy, demonstrating that this relationship is by no means a simple one: in particular, it is important to distinguish between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics to distinguish between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0065442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

We explore the relationship between symmetry and entropy, distinguishing between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor. Symmetry, the concept from which Noether derived the conservation laws of physics, is one of the most important guiding principles of modern physics. Moreover, symmetry is often regarded as a form of order, and entropy is sometimes regarded as a measure of disorder, so it is natural to suppose that symmetry and entropy are related in some way. In this article, we will explore the relationship between symmetry and entropy, demonstrating that this relationship is by no means a simple one: in particular, it is important to distinguish between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics to distinguish between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor.
热力学中的对称和控制
我们探讨了对称性和熵之间的关系,区分了状态对称性和动态对称性,以及在量子热力学背景下纯态对称性和混合态对称性之间的关系。最后,我们将论证,热力学中的对称性最好被理解为控制理论范式中的一种控制手段,我们将描述量子相干电容器背景下基于对称性的控制的有趣技术应用。对称是诺特推导出物理守恒定律的概念,也是现代物理学最重要的指导原则之一。此外,对称性通常被认为是有序的一种形式,而熵有时被认为是无序的一种度量,所以很自然地假设对称性和熵在某种程度上是相关的。在本文中,我们将探讨对称性和熵之间的关系,证明这种关系绝不是一个简单的关系:特别是,区分状态对称性和动态对称性,以及在量子热力学的背景下区分纯态对称性和混合态对称性是很重要的。最后,我们将论证,热力学中的对称性最好被理解为控制理论范式中的一种控制手段,我们将描述量子相干电容器背景下基于对称性的控制的有趣技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信