Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments

Q4 Mathematics
G. Chatzarakis, S. Grace, Irena JadloyskÁ
{"title":"Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments","authors":"G. Chatzarakis, S. Grace, Irena JadloyskÁ","doi":"10.2478/tmmp-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\\[\\Delta x(n) + p(n)x(\\tau (n)) = 0,\\,n \\in {_0}\\quad [\\nabla x(n) - q(n)x(\\sigma (n)) = 0,\\,n \\in ],\\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\\[{(\\tau (n))_{n \\ge 0}},\\quad {(\\sigma (n))_{n \\ge 1}}\\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"81 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\[\Delta x(n) + p(n)x(\tau (n)) = 0,\,n \in {_0}\quad [\nabla x(n) - q(n)x(\sigma (n)) = 0,\,n \in ],\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\[{(\tau (n))_{n \ge 0}},\quad {(\sigma (n))_{n \ge 1}}\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.
非单调参数线性差分方程的振动检验
本文给出了一般偏差变元形式为Δx(n)+p(n)x(τ, n∈ℕ0 [Şx(n)−q(n)x(σ(n))=0, n∈ℕ],\[\Delta x(n)+p(n)x(\tau(n))=0,\,n\in{_0}\quad[\nabla x(n)-q(n)x(\sigma(n), (σ(n))n≥1\[{(\tau(n)_{n\ge 0}}},\ quad{(\sigma(n)]_{\n\ge 1}}]是(不一定是单调的)整数序列。所获得的结果改进了文献中所有已知的结果,并提供了一个在MATLAB中数值求解的例子,说明了这些结果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信