On Equilibrium Existence in a Finite-Agent, Multi-Asset Noisy Rational Expectations Economy

IF 0.3 4区 经济学 Q4 ECONOMICS
Ronaldo Carpio, Meixin Guo
{"title":"On Equilibrium Existence in a Finite-Agent, Multi-Asset Noisy Rational Expectations Economy","authors":"Ronaldo Carpio, Meixin Guo","doi":"10.1515/bejte-2018-0144","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a novel method of proving existence of rational expectations equilibria (REE) in multi-dimensional CARA-Gaussian environments. Our approach is to construct a mapping from agents’ initial beliefs (which are characterized by a positive semidefinite matrix), to their updated beliefs, after reaching and observing equilibrium; we then show Brouwer’s fixed point theorem applies. We apply our approach to a finite-market version of Admati (1985), which is a multi-asset noisy REE asset pricing model with dispersed information. We present an algorithm to numerically solve for equilibrium of the finite model, as well as several examples illustrating the difference in equilibrium behavior between the finite and infinite models. Our method can be applied to any multi-dimensional REE model with Gaussian uncertainty and behavior that is linear in agents’ information.","PeriodicalId":44773,"journal":{"name":"B E Journal of Theoretical Economics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bejte-2018-0144","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"B E Journal of Theoretical Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/bejte-2018-0144","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract We introduce a novel method of proving existence of rational expectations equilibria (REE) in multi-dimensional CARA-Gaussian environments. Our approach is to construct a mapping from agents’ initial beliefs (which are characterized by a positive semidefinite matrix), to their updated beliefs, after reaching and observing equilibrium; we then show Brouwer’s fixed point theorem applies. We apply our approach to a finite-market version of Admati (1985), which is a multi-asset noisy REE asset pricing model with dispersed information. We present an algorithm to numerically solve for equilibrium of the finite model, as well as several examples illustrating the difference in equilibrium behavior between the finite and infinite models. Our method can be applied to any multi-dimensional REE model with Gaussian uncertainty and behavior that is linear in agents’ information.
有限代理多资产噪声理性预期经济中的均衡存在性
摘要我们介绍了一种证明多维CARA-Gaussian环境中合理期望平衡(REE)存在性的新方法。我们的方法是在达到并观察到平衡后,构建从主体的初始信念(以半正定矩阵为特征)到其更新信念的映射;然后我们证明了布劳沃不动点定理的适用性。我们将我们的方法应用于Admati(1985)的有限市场版本,这是一个具有分散信息的多资产噪声REE资产定价模型。我们提出了一种数值求解有限模型平衡的算法,并举例说明了有限和无限模型之间平衡行为的差异。我们的方法可以应用于任何具有高斯不确定性和代理人信息中线性行为的多维REE模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
25.00%
发文量
25
期刊介绍: We welcome submissions in all areas of economic theory, both applied theory and \"pure\" theory. Contributions can be either innovations in economic theory or rigorous new applications of existing theory. Pure theory papers include, but are by no means limited to, those in behavioral economics and decision theory, game theory, general equilibrium theory, and the theory of economic mechanisms. Applications could encompass, but are by no means limited to, contract theory, public finance, financial economics, industrial organization, law and economics, and labor economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信